1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <assert.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <unistd.h>
#include <ppapi/c/ppb_input_event.h>
#include <ppapi/cpp/fullscreen.h>
#include <ppapi/cpp/input_event.h>
#include <ppapi/cpp/instance_handle.h>
#include <ppapi/cpp/var.h>
#include <ppapi/cpp/var_array.h>
#include <ppapi/cpp/var_array_buffer.h>
#include <ppapi/cpp/var_dictionary.h>
#include "ppapi_simple/ps.h"
#include "ppapi_simple/ps_context_2d.h"
#include "ppapi_simple/ps_event.h"
#include "ppapi_simple/ps_instance.h"
#include "ppapi_simple/ps_interface.h"
#include "ppapi_simple/ps_main.h"
#include "sdk_util/macros.h"
#include "sdk_util/thread_pool.h"
using namespace sdk_util; // For sdk_util::ThreadPool
namespace {
#define INLINE inline __attribute__((always_inline))
// BGRA helper macro, for constructing a pixel for a BGRA buffer.
#define MakeBGRA(b, g, r, a) \
(((a) << 24) | ((r) << 16) | ((g) << 8) | (b))
const int kFramesToBenchmark = 100;
const int kCellAlignment = 0x10;
// 128 bit vector types
typedef uint8_t u8x16_t __attribute__ ((vector_size (16)));
// Helper function to broadcast x across 16 element vector.
INLINE u8x16_t broadcast(uint8_t x) {
u8x16_t r = {x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x};
return r;
}
// Convert a count value into a live (green) or dead color value.
const uint32_t kNeighborColors[] = {
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0xFF, 0x00, 0xFF),
MakeBGRA(0x00, 0xFF, 0x00, 0xFF),
MakeBGRA(0x00, 0xFF, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
};
// These represent the new health value of a cell based on its neighboring
// values. The health is binary: either alive or dead.
const uint8_t kIsAlive[] = {
0, 0, 0, 0, 0, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0
};
// Timer helper for benchmarking. Returns seconds elapsed since program start,
// as a double.
timeval start_tv;
int start_tv_retv = gettimeofday(&start_tv, NULL);
inline double getseconds() {
const double usec_to_sec = 0.000001;
timeval tv;
if ((0 == start_tv_retv) && (0 == gettimeofday(&tv, NULL)))
return (tv.tv_sec - start_tv.tv_sec) + tv.tv_usec * usec_to_sec;
return 0.0;
}
} // namespace
class Life {
public:
Life();
virtual ~Life();
// Runs a tick of the simulations, update 2D output.
void Update();
// Handle event from user, or message from JS.
void HandleEvent(PSEvent* ps_event);
private:
void UpdateContext();
void DrawCell(int32_t x, int32_t y);
void ProcessTouchEvent(const pp::TouchInputEvent& touches);
void PostUpdateMessage(const char* message, double value);
void StartBenchmark();
void EndBenchmark();
void Stir();
void wSimulate(int y);
static void wSimulateEntry(int y, void* data);
void Simulate();
bool simd_;
bool multithread_;
bool benchmarking_;
int benchmark_frame_counter_;
double bench_start_time_;
double bench_end_time_;
uint8_t* cell_in_;
uint8_t* cell_out_;
int32_t cell_stride_;
int32_t width_;
int32_t height_;
PSContext2D_t* ps_context_;
ThreadPool* workers_;
};
Life::Life() :
simd_(true),
multithread_(true),
benchmarking_(false),
benchmark_frame_counter_(0),
bench_start_time_(0.0),
bench_end_time_(0.0),
cell_in_(NULL),
cell_out_(NULL),
cell_stride_(0),
width_(0),
height_(0) {
ps_context_ = PSContext2DAllocate(PP_IMAGEDATAFORMAT_BGRA_PREMUL);
// Query system for number of processors via sysconf()
int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
if (num_threads < 2)
num_threads = 2;
workers_ = new ThreadPool(num_threads);
PSEventSetFilter(PSE_ALL);
}
Life::~Life() {
delete workers_;
PSContext2DFree(ps_context_);
}
void Life::UpdateContext() {
cell_stride_ = (ps_context_->width + kCellAlignment - 1) &
~(kCellAlignment - 1);
size_t size = cell_stride_ * ps_context_->height;
if (ps_context_->width != width_ || ps_context_->height != height_) {
free(cell_in_);
free(cell_out_);
// Create a new context
void* in_buffer = NULL;
void* out_buffer = NULL;
// alloc buffers aligned on 16 bytes
posix_memalign(&in_buffer, kCellAlignment, size);
posix_memalign(&out_buffer, kCellAlignment, size);
cell_in_ = (uint8_t*) in_buffer;
cell_out_ = (uint8_t*) out_buffer;
memset(cell_out_, 0, size);
for (size_t index = 0; index < size; index++) {
cell_in_[index] = rand() & 1;
}
width_ = ps_context_->width;
height_ = ps_context_->height;
}
}
void Life::DrawCell(int32_t x, int32_t y) {
if (!cell_in_) return;
if (x > 0 && x < ps_context_->width - 1 &&
y > 0 && y < ps_context_->height - 1) {
cell_in_[x - 1 + y * cell_stride_] = 1;
cell_in_[x + 1 + y * cell_stride_] = 1;
cell_in_[x + (y - 1) * cell_stride_] = 1;
cell_in_[x + (y + 1) * cell_stride_] = 1;
}
}
void Life::ProcessTouchEvent(const pp::TouchInputEvent& touches) {
uint32_t count = touches.GetTouchCount(PP_TOUCHLIST_TYPE_TOUCHES);
uint32_t i, j;
for (i = 0; i < count; i++) {
pp::TouchPoint touch =
touches.GetTouchByIndex(PP_TOUCHLIST_TYPE_TOUCHES, i);
int radius = (int)(touch.radii().x());
int x = (int)(touch.position().x());
int y = (int)(touch.position().y());
// num = 1/100th the area of touch point
uint32_t num = (uint32_t)(M_PI * radius * radius / 100.0f);
for (j = 0; j < num; j++) {
int dx = rand() % (radius * 2) - radius;
int dy = rand() % (radius * 2) - radius;
// only plot random cells within the touch area
if (dx * dx + dy * dy <= radius * radius)
DrawCell(x + dx, y + dy);
}
}
}
void Life::PostUpdateMessage(const char* message_name, double value) {
pp::VarDictionary message;
message.Set("message", message_name);
message.Set("value", value);
PSInterfaceMessaging()->PostMessage(PSGetInstanceId(), message.pp_var());
}
void Life::StartBenchmark() {
printf("Running benchmark... (SIMD: %s, multi-threading: %s, size: %dx%d)\n",
simd_ ? "enabled" : "disabled",
multithread_ ? "enabled" : "disabled",
ps_context_->width,
ps_context_->height);
benchmarking_ = true;
bench_start_time_ = getseconds();
benchmark_frame_counter_ = kFramesToBenchmark;
}
void Life::EndBenchmark() {
double total_time;
bench_end_time_ = getseconds();
benchmarking_ = false;
total_time = bench_end_time_ - bench_start_time_;
printf("Finished - benchmark took %f seconds\n", total_time);
// Send benchmark result to JS.
PostUpdateMessage("benchmark_result", total_time);
}
void Life::HandleEvent(PSEvent* ps_event) {
// Give the 2D context a chance to process the event.
if (0 != PSContext2DHandleEvent(ps_context_, ps_event)) {
UpdateContext();
return;
}
switch(ps_event->type) {
case PSE_INSTANCE_HANDLEINPUT: {
pp::InputEvent event(ps_event->as_resource);
switch(event.GetType()) {
case PP_INPUTEVENT_TYPE_MOUSEDOWN:
case PP_INPUTEVENT_TYPE_MOUSEMOVE: {
pp::MouseInputEvent mouse = pp::MouseInputEvent(event);
// If the button is down, draw
if (mouse.GetModifiers() & PP_INPUTEVENT_MODIFIER_LEFTBUTTONDOWN) {
PP_Point location = mouse.GetPosition();
DrawCell(location.x, location.y);
}
break;
}
case PP_INPUTEVENT_TYPE_TOUCHSTART:
case PP_INPUTEVENT_TYPE_TOUCHMOVE: {
pp::TouchInputEvent touches = pp::TouchInputEvent(event);
ProcessTouchEvent(touches);
break;
}
case PP_INPUTEVENT_TYPE_KEYDOWN: {
pp::Fullscreen fullscreen((pp::InstanceHandle(PSGetInstanceId())));
bool isFullscreen = fullscreen.IsFullscreen();
fullscreen.SetFullscreen(!isFullscreen);
break;
}
default:
break;
}
break; // case PSE_INSTANCE_HANDLEINPUT
}
case PSE_INSTANCE_HANDLEMESSAGE: {
// Convert Pepper Simple message to PPAPI C++ vars
pp::Var var(ps_event->as_var);
if (var.is_dictionary()) {
pp::VarDictionary dictionary(var);
std::string message = dictionary.Get("message").AsString();
if (message == "run_benchmark" && !benchmarking_) {
StartBenchmark();
} else if (message == "set_simd") {
simd_ = dictionary.Get("value").AsBool();
} else if (message == "set_threading") {
multithread_ = dictionary.Get("value").AsBool();
}
}
break; // case PSE_INSTANCE_HANDLEMESSAGE
}
default:
break;
}
}
void Life::Stir() {
int32_t width = ps_context_->width;
int32_t height = ps_context_->height;
int32_t stride = cell_stride_;
int32_t i;
if (cell_in_ == NULL || cell_out_ == NULL)
return;
for (i = 0; i < width; ++i) {
cell_in_[i] = rand() & 1;
cell_in_[i + (height - 1) * stride] = rand() & 1;
}
for (i = 0; i < height; ++i) {
cell_in_[i * stride] = rand() & 1;
cell_in_[i * stride + (width - 1)] = rand() & 1;
}
}
void Life::wSimulate(int y) {
// Don't run simulation on top and bottom borders
if (y < 1 || y >= ps_context_->height - 1)
return;
// Do neighbor summation; apply rules, output pixel color. Note that a 1 cell
// wide perimeter is excluded from the simulation update; only cells from
// x = 1 to x < width - 1 and y = 1 to y < height - 1 are updated.
uint8_t *src0 = (cell_in_ + (y - 1) * cell_stride_);
uint8_t *src1 = src0 + cell_stride_;
uint8_t *src2 = src1 + cell_stride_;
uint8_t *dst = (cell_out_ + y * cell_stride_) + 1;
uint32_t *pixels = static_cast<uint32_t *>(ps_context_->data);
uint32_t *pixel_line = // static_cast<uint32_t*>
(pixels + y * ps_context_->stride / sizeof(uint32_t));
int32_t x = 1;
if (simd_) {
const u8x16_t kOne = broadcast(1);
const u8x16_t kFour = broadcast(4);
const u8x16_t kEight = broadcast(8);
const u8x16_t kZero255 = {0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// Prime the src
u8x16_t src00 = *reinterpret_cast<u8x16_t*>(&src0[0]);
u8x16_t src01 = *reinterpret_cast<u8x16_t*>(&src0[16]);
u8x16_t src10 = *reinterpret_cast<u8x16_t*>(&src1[0]);
u8x16_t src11 = *reinterpret_cast<u8x16_t*>(&src1[16]);
u8x16_t src20 = *reinterpret_cast<u8x16_t*>(&src2[0]);
u8x16_t src21 = *reinterpret_cast<u8x16_t*>(&src2[16]);
// This inner loop is SIMD - each loop iteration will process 16 cells.
for (; (x + 15) < (ps_context_->width - 1); x += 16) {
// Construct jittered source temps, using __builtin_shufflevector(..) to
// extract a shifted 16 element vector from the 32 element concatenation
// of two source vectors.
u8x16_t src0j0 = src00;
u8x16_t src0j1 = __builtin_shufflevector(src00, src01,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);
u8x16_t src0j2 = __builtin_shufflevector(src00, src01,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17);
u8x16_t src1j0 = src10;
u8x16_t src1j1 = __builtin_shufflevector(src10, src11,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);
u8x16_t src1j2 = __builtin_shufflevector(src10, src11,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17);
u8x16_t src2j0 = src20;
u8x16_t src2j1 = __builtin_shufflevector(src20, src21,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);
u8x16_t src2j2 = __builtin_shufflevector(src20, src21,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17);
// Sum the jittered sources to construct neighbor count.
u8x16_t count = src0j0 + src0j1 + src0j2 +
src1j0 + + src1j2 +
src2j0 + src2j1 + src2j2;
// Add the center cell.
count = count + count + src1j1;
// If count > 4 and < 8, center cell will be alive in the next frame.
u8x16_t alive1 = count > kFour;
u8x16_t alive2 = count < kEight;
// Intersect the two comparisons from above.
u8x16_t alive = alive1 & alive2;
// At this point, alive[x] will be one of two values:
// 0x00 for a dead cell
// 0xFF for an alive cell.
//
// Next, convert alive cells to green pixel color.
// Use __builtin_shufflevector(..) to construct output pixels from
// concantination of alive vector and kZero255 const vector.
// Indices 0..15 select the 16 cells from alive vector.
// Index 16 is zero constant from kZero255 constant vector.
// Index 17 is 255 constant from kZero255 constant vector.
// Output pixel color values are in BGRABGRABGRABGRA order.
// Since each pixel needs 4 bytes of color information, 16 cells will
// need to expand to 4 seperate 16 byte pixel splats.
u8x16_t pixel0_3 = __builtin_shufflevector(alive, kZero255,
16, 0, 16, 17, 16, 1, 16, 17, 16, 2, 16, 17, 16, 3, 16, 17);
u8x16_t pixel4_7 = __builtin_shufflevector(alive, kZero255,
16, 4, 16, 17, 16, 5, 16, 17, 16, 6, 16, 17, 16, 7, 16, 17);
u8x16_t pixel8_11 = __builtin_shufflevector(alive, kZero255,
16, 8, 16, 17, 16, 9, 16, 17, 16, 10, 16, 17, 16, 11, 16, 17);
u8x16_t pixel12_15 = __builtin_shufflevector(alive, kZero255,
16, 12, 16, 17, 16, 13, 16, 17, 16, 14, 16, 17, 16, 15, 16, 17);
// Write 16 pixels to output pixel buffer.
*reinterpret_cast<u8x16_t*>(pixel_line + 0) = pixel0_3;
*reinterpret_cast<u8x16_t*>(pixel_line + 4) = pixel4_7;
*reinterpret_cast<u8x16_t*>(pixel_line + 8) = pixel8_11;
*reinterpret_cast<u8x16_t*>(pixel_line + 12) = pixel12_15;
// Convert alive mask to 1 or 0 and store in destination cell array.
*reinterpret_cast<u8x16_t*>(dst) = alive & kOne;
// Increment pointers.
pixel_line += 16;
dst += 16;
src0 += 16;
src1 += 16;
src2 += 16;
// Shift source over by 16 cells and read the next 16 cells.
src00 = src01;
src01 = *reinterpret_cast<u8x16_t*>(&src0[16]);
src10 = src11;
src11 = *reinterpret_cast<u8x16_t*>(&src1[16]);
src20 = src21;
src21 = *reinterpret_cast<u8x16_t*>(&src2[16]);
}
}
// The SIMD loop above does 16 cells at a time. The loop below is the
// regular version which processes one cell at a time. It is used to
// finish the remainder of the scanline not handled by the SIMD loop.
for (; x < (ps_context_->width - 1); ++x) {
// Sum the jittered sources to construct neighbor count.
int count = src0[0] + src0[1] + src0[2] +
src1[0] + + src1[2] +
src2[0] + src2[1] + src2[2];
// Add the center cell.
count = count + count + src1[1];
// Use table lookup indexed by count to determine pixel & alive state.
uint32_t color = kNeighborColors[count];
*pixel_line++ = color;
*dst++ = kIsAlive[count];
++src0;
++src1;
++src2;
}
}
// Static entry point for worker thread.
void Life::wSimulateEntry(int slice, void* thiz) {
static_cast<Life*>(thiz)->wSimulate(slice);
}
void Life::Simulate() {
// Stir up the edges to prevent the simulation from reaching steady state.
Stir();
if (multithread_) {
// If multi-threading enabled, dispatch tasks to pool of worker threads.
workers_->Dispatch(ps_context_->height, wSimulateEntry, this);
} else {
// Else manually simulate each line on this thread.
for (int y = 0; y < ps_context_->height; y++) {
wSimulateEntry(y, this);
}
}
std::swap(cell_in_, cell_out_);
}
void Life::Update() {
PSContext2DGetBuffer(ps_context_);
if (NULL == ps_context_->data)
return;
// If we somehow have not allocated these pointers yet, skip this frame.
if (!cell_in_ || !cell_out_) return;
// Simulate one (or more if benchmarking) frames
do {
Simulate();
if (!benchmarking_)
break;
--benchmark_frame_counter_;
} while(benchmark_frame_counter_ > 0);
if (benchmarking_)
EndBenchmark();
PSContext2DSwapBuffer(ps_context_);
}
// Starting point for the module. We do not use main since it would
// collide with main in libppapi_cpp.
int example_main(int argc, char* argv[]) {
Life life;
while (true) {
PSEvent* ps_event;
// Consume all available events
while ((ps_event = PSEventTryAcquire()) != NULL) {
life.HandleEvent(ps_event);
PSEventRelease(ps_event);
}
// Do simulation, render and present.
life.Update();
}
return 0;
}
// Register the function to call once the Instance Object is initialized.
// see: pappi_simple/ps_main.h
PPAPI_SIMPLE_REGISTER_MAIN(example_main);
|