summaryrefslogtreecommitdiffstats
path: root/net/base/keygen_handler_win.cc
blob: 8fc32e541f18ff4f88bcbcf06143b6ccd11910af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/base/keygen_handler.h"

#include <windows.h>
#include <wincrypt.h>
#pragma comment(lib, "crypt32.lib")
#include <rpc.h>
#pragma comment(lib, "rpcrt4.lib")

#include <list>
#include <string>
#include <vector>

#include "base/base64.h"
#include "base/basictypes.h"
#include "base/crypto/capi_util.h"
#include "base/logging.h"
#include "base/string_piece.h"
#include "base/string_util.h"
#include "base/utf_string_conversions.h"

namespace net {

// Assigns the contents of a CERT_PUBLIC_KEY_INFO structure for the signing
// key in |prov| to |output|. Returns true if encoding was successful.
bool GetSubjectPublicKeyInfo(HCRYPTPROV prov, std::vector<BYTE>* output) {
  BOOL ok;
  DWORD size = 0;

  // From the private key stored in HCRYPTPROV, obtain the public key, stored
  // as a CERT_PUBLIC_KEY_INFO structure. Currently, only RSA public keys are
  // supported.
  ok = CryptExportPublicKeyInfoEx(prov, AT_KEYEXCHANGE, X509_ASN_ENCODING,
                                  szOID_RSA_RSA, 0, NULL, NULL, &size);
  DCHECK(ok);
  if (!ok)
    return false;

  output->resize(size);

  PCERT_PUBLIC_KEY_INFO public_key_casted =
      reinterpret_cast<PCERT_PUBLIC_KEY_INFO>(&(*output)[0]);
  ok = CryptExportPublicKeyInfoEx(prov, AT_KEYEXCHANGE, X509_ASN_ENCODING,
                                  szOID_RSA_RSA, 0, NULL, public_key_casted,
                                  &size);
  DCHECK(ok);
  if (!ok)
    return false;

  output->resize(size);

  return true;
}

// Generates a DER encoded SignedPublicKeyAndChallenge structure from the
// signing key of |prov| and the specified ASCII |challenge| string and
// appends it to |output|.
// True if the encoding was successfully generated.
bool GetSignedPublicKeyAndChallenge(HCRYPTPROV prov,
                                    const std::string& challenge,
                                    std::string* output) {
  std::wstring wide_challenge = ASCIIToWide(challenge);
  std::vector<BYTE> spki;

  if (!GetSubjectPublicKeyInfo(prov, &spki))
    return false;

  // PublicKeyAndChallenge ::= SEQUENCE {
  //     spki SubjectPublicKeyInfo,
  //     challenge IA5STRING
  // }
  CERT_KEYGEN_REQUEST_INFO pkac;
  pkac.dwVersion = CERT_KEYGEN_REQUEST_V1;
  pkac.SubjectPublicKeyInfo =
      *reinterpret_cast<PCERT_PUBLIC_KEY_INFO>(&spki[0]);
  pkac.pwszChallengeString = const_cast<wchar_t*>(wide_challenge.c_str());

  CRYPT_ALGORITHM_IDENTIFIER sig_alg;
  memset(&sig_alg, 0, sizeof(sig_alg));
  sig_alg.pszObjId = szOID_RSA_MD5RSA;

  BOOL ok;
  DWORD size = 0;
  std::vector<BYTE> signed_pkac;
  ok = CryptSignAndEncodeCertificate(prov, AT_KEYEXCHANGE, X509_ASN_ENCODING,
                                     X509_KEYGEN_REQUEST_TO_BE_SIGNED,
                                     &pkac, &sig_alg, NULL,
                                     NULL, &size);
  DCHECK(ok);
  if (!ok)
    return false;

  signed_pkac.resize(size);
  ok = CryptSignAndEncodeCertificate(prov, AT_KEYEXCHANGE, X509_ASN_ENCODING,
                                     X509_KEYGEN_REQUEST_TO_BE_SIGNED,
                                     &pkac, &sig_alg, NULL,
                                     &signed_pkac[0], &size);
  DCHECK(ok);
  if (!ok)
    return false;

  output->assign(reinterpret_cast<char*>(&signed_pkac[0]), size);
  return true;
}

// Generates a unique name for the container which will store the key that is
// generated. The traditional Windows approach is to use a GUID here.
std::wstring GetNewKeyContainerId() {
  RPC_STATUS status = RPC_S_OK;
  std::wstring result;

  UUID id = { 0 };
  status = UuidCreateSequential(&id);
  if (status != RPC_S_OK && status != RPC_S_UUID_LOCAL_ONLY)
    return result;

  RPC_WSTR rpc_string = NULL;
  status = UuidToString(&id, &rpc_string);
  if (status != RPC_S_OK)
    return result;

  // RPC_WSTR is unsigned short*.  wchar_t is a built-in type of Visual C++,
  // so the type cast is necessary.
  result.assign(reinterpret_cast<wchar_t*>(rpc_string));
  RpcStringFree(&rpc_string);

  return result;
}

std::string KeygenHandler::GenKeyAndSignChallenge() {
  std::string result;

  bool is_success = true;
  HCRYPTPROV prov = NULL;
  HCRYPTKEY key = NULL;
  DWORD flags = (key_size_in_bits_ << 16) | CRYPT_EXPORTABLE;
  std::string spkac;

  std::wstring new_key_id;

  // TODO(rsleevi): Have the user choose which provider they should use, which
  // needs to be filtered by those providers which can provide the key type
  // requested or the key size requested. This is especially important for
  // generating certificates that will be stored on smart cards.
  const int kMaxAttempts = 5;
  BOOL ok = FALSE;
  for (int attempt = 0; attempt < kMaxAttempts; ++attempt) {
    // Per MSDN documentation for CryptAcquireContext, if applications will be
    // creating their own keys, they should ensure unique naming schemes to
    // prevent overlap with any other applications or consumers of CSPs, and
    // *should not* store new keys within the default, NULL key container.
    new_key_id = GetNewKeyContainerId();
    if (new_key_id.empty())
      return result;

    // Only create new key containers, so that existing key containers are not
    // overwritten.
    ok = base::CryptAcquireContextLocked(&prov, new_key_id.c_str(), NULL,
                                         PROV_RSA_FULL,
                                         CRYPT_SILENT | CRYPT_NEWKEYSET);

    if (ok || GetLastError() != NTE_BAD_KEYSET)
      break;
  }
  if (!ok) {
    LOG(ERROR) << "Couldn't acquire a CryptoAPI provider context: "
               << GetLastError();
    is_success = false;
    goto failure;
  }

  if (!CryptGenKey(prov, CALG_RSA_KEYX, flags, &key)) {
    LOG(ERROR) << "Couldn't generate an RSA key";
    is_success = false;
    goto failure;
  }

  if (!GetSignedPublicKeyAndChallenge(prov, challenge_, &spkac)) {
    LOG(ERROR) << "Couldn't generate the signed public key and challenge";
    is_success = false;
    goto failure;
  }

  if (!base::Base64Encode(spkac, &result)) {
    LOG(ERROR) << "Couldn't convert signed key into base64";
    is_success = false;
    goto failure;
  }

 failure:
  if (!is_success) {
    LOG(ERROR) << "SSL Keygen failed";
  } else {
    LOG(INFO) << "SSL Key succeeded";
  }
  if (key) {
    // Securely destroys the handle, but leaves the underlying key alone. The
    // key can be obtained again by resolving the key location. If
    // |stores_key_| is false, the underlying key will be destroyed below.
    CryptDestroyKey(key);
  }

  if (prov) {
    CryptReleaseContext(prov, 0);
    prov = NULL;
    if (!stores_key_) {
      // Fully destroys any of the keys that were created and releases prov.
      base::CryptAcquireContextLocked(&prov, new_key_id.c_str(), NULL,
                                      PROV_RSA_FULL,
                                      CRYPT_SILENT | CRYPT_DELETEKEYSET);
    }
  }

  return result;
}

}  // namespace net