summaryrefslogtreecommitdiffstats
path: root/net/base/mime_sniffer.cc
blob: a6527c3cc3694de3c542b9527576216b1c5a4ea4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Detecting mime types is a tricky business because we need to balance
// compatibility concerns with security issues.  Here is a survey of how other
// browsers behave and then a description of how we intend to behave.
//
// HTML payload, no Content-Type header:
// * IE 7: Render as HTML
// * Firefox 2: Render as HTML
// * Safari 3: Render as HTML
// * Opera 9: Render as HTML
//
// Here the choice seems clear:
// => Chrome: Render as HTML
//
// HTML payload, Content-Type: "text/plain":
// * IE 7: Render as HTML
// * Firefox 2: Render as text
// * Safari 3: Render as text (Note: Safari will Render as HTML if the URL
//                                   has an HTML extension)
// * Opera 9: Render as text
//
// Here we choose to follow the majority (and break some compatibility with IE).
// Many folks dislike IE's behavior here.
// => Chrome: Render as text
// We generalize this as follows.  If the Content-Type header is text/plain
// we won't detect dangerous mime types (those that can execute script).
//
// HTML payload, Content-Type: "application/octet-stream":
// * IE 7: Render as HTML
// * Firefox 2: Download as application/octet-stream
// * Safari 3: Render as HTML
// * Opera 9: Render as HTML
//
// We follow Firefox.
// => Chrome: Download as application/octet-stream
// One factor in this decision is that IIS 4 and 5 will send
// application/octet-stream for .xhtml files (because they don't recognize
// the extension).  We did some experiments and it looks like this doesn't occur
// very often on the web.  We choose the more secure option.
//
// GIF payload, no Content-Type header:
// * IE 7: Render as GIF
// * Firefox 2: Render as GIF
// * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
//                                        URL has an GIF extension)
// * Opera 9: Render as GIF
//
// The choice is clear.
// => Chrome: Render as GIF
// Once we decide to render HTML without a Content-Type header, there isn't much
// reason not to render GIFs.
//
// GIF payload, Content-Type: "text/plain":
// * IE 7: Render as GIF
// * Firefox 2: Download as application/octet-stream (Note: Firefox will
//                              Download as GIF if the URL has an GIF extension)
// * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
//                                        URL has an GIF extension)
// * Opera 9: Render as GIF
//
// Displaying as text/plain makes little sense as the content will look like
// gibberish.  Here, we could change our minds and download.
// => Chrome: Render as GIF
//
// GIF payload, Content-Type: "application/octet-stream":
// * IE 7: Render as GIF
// * Firefox 2: Download as application/octet-stream (Note: Firefox will
//                              Download as GIF if the URL has an GIF extension)
// * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
//                                        URL has an GIF extension)
// * Opera 9: Render as GIF
//
// We used to render as GIF here, but the problem is that some sites want to
// trigger downloads by sending application/octet-stream (even though they
// should be sending Content-Disposition: attachment).  Although it is safe
// to render as GIF from a security perspective, we actually get better
// compatibility if we don't sniff from application/octet stream at all.
// => Chrome: Download as application/octet-stream
//
// XHTML payload, Content-Type: "text/xml":
// * IE 7: Render as XML
// * Firefox 2: Render as HTML
// * Safari 3: Render as HTML
// * Opera 9: Render as HTML
// The layout tests rely on us rendering this as HTML.
// But we're conservative in XHTML detection, as this runs afoul of the
// "don't detect dangerous mime types" rule.
//
// Note that our definition of HTML payload is much stricter than IE's
// definition and roughly the same as Firefox's definition.

#include <stdint.h>
#include <string>

#include "net/base/mime_sniffer.h"

#include "base/logging.h"
#include "base/metrics/histogram.h"
#include "base/strings/string_util.h"
#include "url/gurl.h"

namespace net {

// The number of content bytes we need to use all our magic numbers.  Feel free
// to increase this number if you add a longer magic number.
static const size_t kBytesRequiredForMagic = 42;

struct MagicNumber {
  const char* const mime_type;
  const char* const magic;
  size_t magic_len;
  bool is_string;
  const char* const mask;  // if set, must have same length as |magic|
};

#define MAGIC_NUMBER(mime_type, magic) \
  { (mime_type), (magic), sizeof(magic)-1, false, NULL },

template <int MagicSize, int MaskSize>
class VerifySizes {
  static_assert(MagicSize == MaskSize, "sizes must be equal");

 public:
  enum { SIZES = MagicSize };
};

#define verified_sizeof(magic, mask) \
VerifySizes<sizeof(magic), sizeof(mask)>::SIZES

#define MAGIC_MASK(mime_type, magic, mask) \
  { (mime_type), (magic), verified_sizeof(magic, mask)-1, false, (mask) },

// Magic strings are case insensitive and must not include '\0' characters
#define MAGIC_STRING(mime_type, magic) \
  { (mime_type), (magic), sizeof(magic)-1, true, NULL },

static const MagicNumber kMagicNumbers[] = {
  // Source: HTML 5 specification
  MAGIC_NUMBER("application/pdf", "%PDF-")
  MAGIC_NUMBER("application/postscript", "%!PS-Adobe-")
  MAGIC_NUMBER("image/gif", "GIF87a")
  MAGIC_NUMBER("image/gif", "GIF89a")
  MAGIC_NUMBER("image/png", "\x89" "PNG\x0D\x0A\x1A\x0A")
  MAGIC_NUMBER("image/jpeg", "\xFF\xD8\xFF")
  MAGIC_NUMBER("image/bmp", "BM")
  // Source: Mozilla
  MAGIC_NUMBER("text/plain", "#!")  // Script
  MAGIC_NUMBER("text/plain", "%!")  // Script, similar to PS
  MAGIC_NUMBER("text/plain", "From")
  MAGIC_NUMBER("text/plain", ">From")
  // Chrome specific
  MAGIC_NUMBER("application/x-gzip", "\x1F\x8B\x08")
  MAGIC_NUMBER("audio/x-pn-realaudio", "\x2E\x52\x4D\x46")
  MAGIC_NUMBER("video/x-ms-asf",
      "\x30\x26\xB2\x75\x8E\x66\xCF\x11\xA6\xD9\x00\xAA\x00\x62\xCE\x6C")
  MAGIC_NUMBER("image/tiff", "I I")
  MAGIC_NUMBER("image/tiff", "II*")
  MAGIC_NUMBER("image/tiff", "MM\x00*")
  MAGIC_NUMBER("audio/mpeg", "ID3")
  MAGIC_NUMBER("image/webp", "RIFF....WEBPVP8 ")
  MAGIC_NUMBER("video/webm", "\x1A\x45\xDF\xA3")
  MAGIC_NUMBER("application/zip", "PK\x03\x04")
  MAGIC_NUMBER("application/x-rar-compressed", "Rar!\x1A\x07\x00")
  MAGIC_NUMBER("application/x-msmetafile", "\xD7\xCD\xC6\x9A")
  MAGIC_NUMBER("application/octet-stream", "MZ")  // EXE
  // Sniffing for Flash:
  //
  //   MAGIC_NUMBER("application/x-shockwave-flash", "CWS")
  //   MAGIC_NUMBER("application/x-shockwave-flash", "FLV")
  //   MAGIC_NUMBER("application/x-shockwave-flash", "FWS")
  //
  // Including these magic number for Flash is a trade off.
  //
  // Pros:
  //   * Flash is an important and popular file format
  //
  // Cons:
  //   * These patterns are fairly weak
  //   * If we mistakenly decide something is Flash, we will execute it
  //     in the origin of an unsuspecting site.  This could be a security
  //     vulnerability if the site allows users to upload content.
  //
  // On balance, we do not include these patterns.
};

// The number of content bytes we need to use all our Microsoft Office magic
// numbers.
static const size_t kBytesRequiredForOfficeMagic = 8;

static const MagicNumber kOfficeMagicNumbers[] = {
  MAGIC_NUMBER("CFB", "\xD0\xCF\x11\xE0\xA1\xB1\x1A\xE1")
  MAGIC_NUMBER("OOXML", "PK\x03\x04")
};

enum OfficeDocType {
  DOC_TYPE_WORD,
  DOC_TYPE_EXCEL,
  DOC_TYPE_POWERPOINT,
  DOC_TYPE_NONE
};

struct OfficeExtensionType {
  OfficeDocType doc_type;
  const char* const extension;
  size_t extension_len;
};

#define OFFICE_EXTENSION(type, extension) \
  { (type), (extension), sizeof(extension) - 1 },

static const OfficeExtensionType kOfficeExtensionTypes[] = {
  OFFICE_EXTENSION(DOC_TYPE_WORD, ".doc")
  OFFICE_EXTENSION(DOC_TYPE_EXCEL, ".xls")
  OFFICE_EXTENSION(DOC_TYPE_POWERPOINT, ".ppt")
  OFFICE_EXTENSION(DOC_TYPE_WORD, ".docx")
  OFFICE_EXTENSION(DOC_TYPE_EXCEL, ".xlsx")
  OFFICE_EXTENSION(DOC_TYPE_POWERPOINT, ".pptx")
};

static const MagicNumber kExtraMagicNumbers[] = {
  MAGIC_NUMBER("image/x-xbitmap", "#define")
  MAGIC_NUMBER("image/x-icon", "\x00\x00\x01\x00")
  MAGIC_NUMBER("image/svg+xml", "<?xml_version=")
  MAGIC_NUMBER("audio/wav", "RIFF....WAVEfmt ")
  MAGIC_NUMBER("video/avi", "RIFF....AVI LIST")
  MAGIC_NUMBER("audio/ogg", "OggS")
  MAGIC_MASK("video/mpeg", "\x00\x00\x01\xB0", "\xFF\xFF\xFF\xF0")
  MAGIC_MASK("audio/mpeg", "\xFF\xE0", "\xFF\xE0")
  MAGIC_NUMBER("video/3gpp", "....ftyp3g")
  MAGIC_NUMBER("video/3gpp", "....ftypavcl")
  MAGIC_NUMBER("video/mp4", "....ftyp")
  MAGIC_NUMBER("video/quicktime", "....moov")
  MAGIC_NUMBER("application/x-shockwave-flash", "CWS")
  MAGIC_NUMBER("application/x-shockwave-flash", "FWS")
  MAGIC_NUMBER("video/x-flv", "FLV")
  MAGIC_NUMBER("audio/x-flac", "fLaC")

  // RAW image types.
  MAGIC_NUMBER("image/x-canon-cr2", "II\x2a\x00\x10\x00\x00\x00CR")
  MAGIC_NUMBER("image/x-canon-crw", "II\x1a\x00\x00\x00HEAPCCDR")
  MAGIC_NUMBER("image/x-minolta-mrw", "\x00MRM")
  MAGIC_NUMBER("image/x-olympus-orf", "MMOR")  // big-endian
  MAGIC_NUMBER("image/x-olympus-orf", "IIRO")  // little-endian
  MAGIC_NUMBER("image/x-olympus-orf", "IIRS")  // little-endian
  MAGIC_NUMBER("image/x-fuji-raf", "FUJIFILMCCD-RAW ")
  MAGIC_NUMBER("image/x-panasonic-raw",
               "IIU\x00\x08\x00\x00\x00")  // Panasonic .raw
  MAGIC_NUMBER("image/x-panasonic-raw",
               "IIU\x00\x18\x00\x00\x00")  // Panasonic .rw2
  MAGIC_NUMBER("image/x-phaseone-raw", "MMMMRaw")
  MAGIC_NUMBER("image/x-x3f", "FOVb")
};

// Our HTML sniffer differs slightly from Mozilla.  For example, Mozilla will
// decide that a document that begins "<!DOCTYPE SOAP-ENV:Envelope PUBLIC " is
// HTML, but we will not.

#define MAGIC_HTML_TAG(tag) \
  MAGIC_STRING("text/html", "<" tag)

static const MagicNumber kSniffableTags[] = {
  // XML processing directive.  Although this is not an HTML mime type, we sniff
  // for this in the HTML phase because text/xml is just as powerful as HTML and
  // we want to leverage our white space skipping technology.
  MAGIC_NUMBER("text/xml", "<?xml")  // Mozilla
  // DOCTYPEs
  MAGIC_HTML_TAG("!DOCTYPE html")  // HTML5 spec
  // Sniffable tags, ordered by how often they occur in sniffable documents.
  MAGIC_HTML_TAG("script")  // HTML5 spec, Mozilla
  MAGIC_HTML_TAG("html")  // HTML5 spec, Mozilla
  MAGIC_HTML_TAG("!--")
  MAGIC_HTML_TAG("head")  // HTML5 spec, Mozilla
  MAGIC_HTML_TAG("iframe")  // Mozilla
  MAGIC_HTML_TAG("h1")  // Mozilla
  MAGIC_HTML_TAG("div")  // Mozilla
  MAGIC_HTML_TAG("font")  // Mozilla
  MAGIC_HTML_TAG("table")  // Mozilla
  MAGIC_HTML_TAG("a")  // Mozilla
  MAGIC_HTML_TAG("style")  // Mozilla
  MAGIC_HTML_TAG("title")  // Mozilla
  MAGIC_HTML_TAG("b")  // Mozilla
  MAGIC_HTML_TAG("body")  // Mozilla
  MAGIC_HTML_TAG("br")
  MAGIC_HTML_TAG("p")  // Mozilla
};

static base::HistogramBase* UMASnifferHistogramGet(const char* name,
                                                   int array_size) {
  base::HistogramBase* counter =
      base::LinearHistogram::FactoryGet(name, 1, array_size - 1, array_size,
          base::HistogramBase::kUmaTargetedHistogramFlag);
  return counter;
}

// Compare content header to a magic number where magic_entry can contain '.'
// for single character of anything, allowing some bytes to be skipped.
static bool MagicCmp(const char* magic_entry, const char* content, size_t len) {
  while (len) {
    if ((*magic_entry != '.') && (*magic_entry != *content))
      return false;
    ++magic_entry;
    ++content;
    --len;
  }
  return true;
}

// Like MagicCmp() except that it ANDs each byte with a mask before
// the comparison, because there are some bits we don't care about.
static bool MagicMaskCmp(const char* magic_entry,
                         const char* content,
                         size_t len,
                         const char* mask) {
  while (len) {
    if ((*magic_entry != '.') && (*magic_entry != (*mask & *content)))
      return false;
    ++magic_entry;
    ++content;
    ++mask;
    --len;
  }
  return true;
}

static bool MatchMagicNumber(const char* content,
                             size_t size,
                             const MagicNumber& magic_entry,
                             std::string* result) {
  const size_t len = magic_entry.magic_len;

  // Keep kBytesRequiredForMagic honest.
  DCHECK_LE(len, kBytesRequiredForMagic);

  // To compare with magic strings, we need to compute strlen(content), but
  // content might not actually have a null terminator.  In that case, we
  // pretend the length is content_size.
  const char* end = static_cast<const char*>(memchr(content, '\0', size));
  const size_t content_strlen =
      (end != NULL) ? static_cast<size_t>(end - content) : size;

  bool match = false;
  if (magic_entry.is_string) {
    if (content_strlen >= len) {
      // Do a case-insensitive prefix comparison.
      DCHECK_EQ(strlen(magic_entry.magic), len);
      match = base::EqualsCaseInsensitiveASCII(magic_entry.magic,
                                               base::StringPiece(content, len));
    }
  } else {
    if (size >= len) {
      if (!magic_entry.mask) {
        match = MagicCmp(magic_entry.magic, content, len);
      } else {
        match = MagicMaskCmp(magic_entry.magic, content, len, magic_entry.mask);
      }
    }
  }

  if (match) {
    result->assign(magic_entry.mime_type);
    return true;
  }
  return false;
}

static bool CheckForMagicNumbers(const char* content, size_t size,
                                 const MagicNumber* magic, size_t magic_len,
                                 base::HistogramBase* counter,
                                 std::string* result) {
  for (size_t i = 0; i < magic_len; ++i) {
    if (MatchMagicNumber(content, size, magic[i], result)) {
      if (counter) counter->Add(static_cast<int>(i));
      return true;
    }
  }
  return false;
}

// Truncates |size| to |max_size| and returns true if |size| is at least
// |max_size|.
static bool TruncateSize(const size_t max_size, size_t* size) {
  // Keep kMaxBytesToSniff honest.
  DCHECK_LE(static_cast<int>(max_size), kMaxBytesToSniff);

  if (*size >= max_size) {
    *size = max_size;
    return true;
  }
  return false;
}

// Returns true and sets result if the content appears to be HTML.
// Clears have_enough_content if more data could possibly change the result.
static bool SniffForHTML(const char* content,
                         size_t size,
                         bool* have_enough_content,
                         std::string* result) {
  // For HTML, we are willing to consider up to 512 bytes. This may be overly
  // conservative as IE only considers 256.
  *have_enough_content &= TruncateSize(512, &size);

  // We adopt a strategy similar to that used by Mozilla to sniff HTML tags,
  // but with some modifications to better match the HTML5 spec.
  const char* const end = content + size;
  const char* pos;
  for (pos = content; pos < end; ++pos) {
    if (!base::IsAsciiWhitespace(*pos))
      break;
  }
  static base::HistogramBase* counter(NULL);
  if (!counter) {
    counter = UMASnifferHistogramGet("mime_sniffer.kSniffableTags2",
                                     arraysize(kSniffableTags));
  }
  // |pos| now points to first non-whitespace character (or at end).
  return CheckForMagicNumbers(pos, end - pos,
                              kSniffableTags, arraysize(kSniffableTags),
                              counter, result);
}

// Returns true and sets result if the content matches any of kMagicNumbers.
// Clears have_enough_content if more data could possibly change the result.
static bool SniffForMagicNumbers(const char* content,
                                 size_t size,
                                 bool* have_enough_content,
                                 std::string* result) {
  *have_enough_content &= TruncateSize(kBytesRequiredForMagic, &size);

  // Check our big table of Magic Numbers
  static base::HistogramBase* counter(NULL);
  if (!counter) {
    counter = UMASnifferHistogramGet("mime_sniffer.kMagicNumbers2",
                                     arraysize(kMagicNumbers));
  }
  return CheckForMagicNumbers(content, size,
                              kMagicNumbers, arraysize(kMagicNumbers),
                              counter, result);
}

// Returns true and sets result if the content matches any of
// kOfficeMagicNumbers, and the URL has the proper extension.
// Clears |have_enough_content| if more data could possibly change the result.
static bool SniffForOfficeDocs(const char* content,
                               size_t size,
                               const GURL& url,
                               bool* have_enough_content,
                               std::string* result) {
  *have_enough_content &= TruncateSize(kBytesRequiredForOfficeMagic, &size);

  // Check our table of magic numbers for Office file types.
  std::string office_version;
  if (!CheckForMagicNumbers(content, size,
                            kOfficeMagicNumbers, arraysize(kOfficeMagicNumbers),
                            NULL, &office_version))
    return false;

  OfficeDocType type = DOC_TYPE_NONE;
  base::StringPiece url_path = url.path_piece();
  for (size_t i = 0; i < arraysize(kOfficeExtensionTypes); ++i) {
    if (url_path.length() < kOfficeExtensionTypes[i].extension_len)
      continue;

    base::StringPiece extension = url_path.substr(
        url_path.length() - kOfficeExtensionTypes[i].extension_len);
    if (base::EqualsCaseInsensitiveASCII(
            extension,
            base::StringPiece(kOfficeExtensionTypes[i].extension,
                              kOfficeExtensionTypes[i].extension_len))) {
      type = kOfficeExtensionTypes[i].doc_type;
      break;
    }
  }

  if (type == DOC_TYPE_NONE)
    return false;

  if (office_version == "CFB") {
    switch (type) {
      case DOC_TYPE_WORD:
        *result = "application/msword";
        return true;
      case DOC_TYPE_EXCEL:
        *result = "application/vnd.ms-excel";
        return true;
      case DOC_TYPE_POWERPOINT:
        *result = "application/vnd.ms-powerpoint";
        return true;
      case DOC_TYPE_NONE:
        NOTREACHED();
        return false;
    }
  } else if (office_version == "OOXML") {
    switch (type) {
      case DOC_TYPE_WORD:
        *result = "application/vnd.openxmlformats-officedocument."
                  "wordprocessingml.document";
        return true;
      case DOC_TYPE_EXCEL:
        *result = "application/vnd.openxmlformats-officedocument."
                  "spreadsheetml.sheet";
        return true;
      case DOC_TYPE_POWERPOINT:
        *result = "application/vnd.openxmlformats-officedocument."
                  "presentationml.presentation";
        return true;
      case DOC_TYPE_NONE:
        NOTREACHED();
        return false;
    }
  }

  NOTREACHED();
  return false;
}

static bool IsOfficeType(const std::string& type_hint) {
  return (type_hint == "application/msword" ||
          type_hint == "application/vnd.ms-excel" ||
          type_hint == "application/vnd.ms-powerpoint" ||
          type_hint == "application/vnd.openxmlformats-officedocument."
                       "wordprocessingml.document" ||
          type_hint == "application/vnd.openxmlformats-officedocument."
                       "spreadsheetml.sheet" ||
          type_hint == "application/vnd.openxmlformats-officedocument."
                       "presentationml.presentation" ||
          type_hint == "application/vnd.ms-excel.sheet.macroenabled.12" ||
          type_hint == "application/vnd.ms-word.document.macroenabled.12" ||
          type_hint == "application/vnd.ms-powerpoint.presentation."
                       "macroenabled.12" ||
          type_hint == "application/mspowerpoint" ||
          type_hint == "application/msexcel" ||
          type_hint == "application/vnd.ms-word" ||
          type_hint == "application/vnd.ms-word.document.12" ||
          type_hint == "application/vnd.msword");
}

// This function checks for files that have a Microsoft Office MIME type
// set, but are not actually Office files.
//
// If this is not actually an Office file, |*result| is set to
// "application/octet-stream", otherwise it is not modified.
//
// Returns false if additional data is required to determine the file type, or
// true if there is enough data to make a decision.
static bool SniffForInvalidOfficeDocs(const char* content,
                                      size_t size,
                                      const GURL& url,
                                      std::string* result) {
  if (!TruncateSize(kBytesRequiredForOfficeMagic, &size))
    return false;

  // Check our table of magic numbers for Office file types.  If it does not
  // match one, the MIME type was invalid.  Set it instead to a safe value.
  std::string office_version;
  if (!CheckForMagicNumbers(content, size,
                            kOfficeMagicNumbers, arraysize(kOfficeMagicNumbers),
                            NULL, &office_version)) {
    *result = "application/octet-stream";
  }

  // We have enough information to determine if this was a Microsoft Office
  // document or not, so sniffing is completed.
  return true;
}

// Byte order marks
static const MagicNumber kMagicXML[] = {
  // We want to be very conservative in interpreting text/xml content as
  // XHTML -- we just want to sniff enough to make unit tests pass.
  // So we match explicitly on this, and don't match other ways of writing
  // it in semantically-equivalent ways.
  MAGIC_STRING("application/xhtml+xml",
               "<html xmlns=\"http://www.w3.org/1999/xhtml\"")
  MAGIC_STRING("application/atom+xml", "<feed")
  MAGIC_STRING("application/rss+xml", "<rss")  // UTF-8
};

// Returns true and sets result if the content appears to contain XHTML or a
// feed.
// Clears have_enough_content if more data could possibly change the result.
//
// TODO(evanm): this is similar but more conservative than what Safari does,
// while HTML5 has a different recommendation -- what should we do?
// TODO(evanm): this is incorrect for documents whose encoding isn't a superset
// of ASCII -- do we care?
static bool SniffXML(const char* content,
                     size_t size,
                     bool* have_enough_content,
                     std::string* result) {
  // We allow at most 300 bytes of content before we expect the opening tag.
  *have_enough_content &= TruncateSize(300, &size);
  const char* pos = content;
  const char* const end = content + size;

  // This loop iterates through tag-looking offsets in the file.
  // We want to skip XML processing instructions (of the form "<?xml ...")
  // and stop at the first "plain" tag, then make a decision on the mime-type
  // based on the name (or possibly attributes) of that tag.
  static base::HistogramBase* counter(NULL);
  if (!counter) {
    counter = UMASnifferHistogramGet("mime_sniffer.kMagicXML2",
                                     arraysize(kMagicXML));
  }
  const int kMaxTagIterations = 5;
  for (int i = 0; i < kMaxTagIterations && pos < end; ++i) {
    pos = reinterpret_cast<const char*>(memchr(pos, '<', end - pos));
    if (!pos)
      return false;

    static const char kXmlPrefix[] = "<?xml";
    static const size_t kXmlPrefixLength = arraysize(kXmlPrefix) - 1;
    static const char kDocTypePrefix[] = "<!DOCTYPE";
    static const size_t kDocTypePrefixLength = arraysize(kDocTypePrefix) - 1;

    if ((pos + kXmlPrefixLength <= end) &&
        base::EqualsCaseInsensitiveASCII(
            base::StringPiece(pos, kXmlPrefixLength),
            base::StringPiece(kXmlPrefix, kXmlPrefixLength))) {
      // Skip XML declarations.
      ++pos;
      continue;
    } else if ((pos + kDocTypePrefixLength <= end) &&
               base::EqualsCaseInsensitiveASCII(
                   base::StringPiece(pos, kDocTypePrefixLength),
                   base::StringPiece(kDocTypePrefix, kDocTypePrefixLength))) {
      // Skip DOCTYPE declarations.
      ++pos;
      continue;
    }

    if (CheckForMagicNumbers(pos, end - pos,
                             kMagicXML, arraysize(kMagicXML),
                             counter, result))
      return true;

    // TODO(evanm): handle RSS 1.0, which is an RDF format and more difficult
    // to identify.

    // If we get here, we've hit an initial tag that hasn't matched one of the
    // above tests.  Abort.
    return true;
  }

  // We iterated too far without finding a start tag.
  // If we have more content to look at, we aren't going to change our mind by
  // seeing more bytes from the network.
  return pos < end;
}

// Byte order marks
static const MagicNumber kByteOrderMark[] = {
  MAGIC_NUMBER("text/plain", "\xFE\xFF")  // UTF-16BE
  MAGIC_NUMBER("text/plain", "\xFF\xFE")  // UTF-16LE
  MAGIC_NUMBER("text/plain", "\xEF\xBB\xBF")  // UTF-8
};

// Returns true and sets result to "application/octet-stream" if the content
// appears to be binary data. Otherwise, returns false and sets "text/plain".
// Clears have_enough_content if more data could possibly change the result.
static bool SniffBinary(const char* content,
                        size_t size,
                        bool* have_enough_content,
                        std::string* result) {
  // There is no concensus about exactly how to sniff for binary content.
  // * IE 7: Don't sniff for binary looking bytes, but trust the file extension.
  // * Firefox 3.5: Sniff first 4096 bytes for a binary looking byte.
  // Here, we side with FF, but with a smaller buffer. This size was chosen
  // because it is small enough to comfortably fit into a single packet (after
  // allowing for headers) and yet large enough to account for binary formats
  // that have a significant amount of ASCII at the beginning (crbug.com/15314).
  const bool is_truncated = TruncateSize(kMaxBytesToSniff, &size);

  // First, we look for a BOM.
  static base::HistogramBase* counter(NULL);
  if (!counter) {
    counter = UMASnifferHistogramGet("mime_sniffer.kByteOrderMark2",
                                     arraysize(kByteOrderMark));
  }
  std::string unused;
  if (CheckForMagicNumbers(content, size,
                           kByteOrderMark, arraysize(kByteOrderMark),
                           counter, &unused)) {
    // If there is BOM, we think the buffer is not binary.
    result->assign("text/plain");
    return false;
  }

  // Next we look to see if any of the bytes "look binary."
  if (LooksLikeBinary(content, size)) {
    result->assign("application/octet-stream");
    return true;
  }

  // No evidence either way. Default to non-binary and, if truncated, clear
  // have_enough_content because there could be a binary looking byte in the
  // truncated data.
  *have_enough_content &= is_truncated;
  result->assign("text/plain");
  return false;
}

static bool IsUnknownMimeType(const std::string& mime_type) {
  // TODO(tc): Maybe reuse some code in net/http/http_response_headers.* here.
  // If we do, please be careful not to alter the semantics at all.
  static const char* const kUnknownMimeTypes[] = {
    // Empty mime types are as unknown as they get.
    "",
    // The unknown/unknown type is popular and uninformative
    "unknown/unknown",
    // The second most popular unknown mime type is application/unknown
    "application/unknown",
    // Firefox rejects a mime type if it is exactly */*
    "*/*",
  };
  static base::HistogramBase* counter(NULL);
  if (!counter) {
    counter = UMASnifferHistogramGet("mime_sniffer.kUnknownMimeTypes2",
                                     arraysize(kUnknownMimeTypes) + 1);
  }
  for (size_t i = 0; i < arraysize(kUnknownMimeTypes); ++i) {
    if (mime_type == kUnknownMimeTypes[i]) {
      counter->Add(i);
      return true;
    }
  }
  if (mime_type.find('/') == std::string::npos) {
    // Firefox rejects a mime type if it does not contain a slash
    counter->Add(arraysize(kUnknownMimeTypes));
    return true;
  }
  return false;
}

// Returns true and sets result if the content appears to be a crx (Chrome
// extension) file.
// Clears have_enough_content if more data could possibly change the result.
static bool SniffCRX(const char* content,
                     size_t size,
                     const GURL& url,
                     const std::string& type_hint,
                     bool* have_enough_content,
                     std::string* result) {
  static base::HistogramBase* counter(NULL);
  if (!counter)
    counter = UMASnifferHistogramGet("mime_sniffer.kSniffCRX", 3);

  // Technically, the crx magic number is just Cr24, but the bytes after that
  // are a version number which changes infrequently. Including it in the
  // sniffing gives us less room for error. If the version number ever changes,
  // we can just add an entry to this list.
  //
  // TODO(aa): If we ever have another magic number, we'll want to pass a
  // histogram into CheckForMagicNumbers(), below, to see which one matched.
  static const struct MagicNumber kCRXMagicNumbers[] = {
    MAGIC_NUMBER("application/x-chrome-extension", "Cr24\x02\x00\x00\x00")
  };

  // Only consider files that have the extension ".crx".
  if (base::EndsWith(url.path_piece(), ".crx", base::CompareCase::SENSITIVE))
    counter->Add(1);
  else
    return false;

  *have_enough_content &= TruncateSize(kBytesRequiredForMagic, &size);
  if (CheckForMagicNumbers(content, size,
                           kCRXMagicNumbers, arraysize(kCRXMagicNumbers),
                           NULL, result)) {
    counter->Add(2);
  } else {
    return false;
  }

  return true;
}

bool ShouldSniffMimeType(const GURL& url, const std::string& mime_type) {
  static base::HistogramBase* should_sniff_counter(NULL);
  if (!should_sniff_counter) {
    should_sniff_counter =
        UMASnifferHistogramGet("mime_sniffer.ShouldSniffMimeType2", 3);
  }
  bool sniffable_scheme = url.is_empty() ||
                          url.SchemeIsHTTPOrHTTPS() ||
                          url.SchemeIs("ftp") ||
#if defined(OS_ANDROID)
                          url.SchemeIs("content") ||
#endif
                          url.SchemeIsFile() ||
                          url.SchemeIsFileSystem();
  if (!sniffable_scheme) {
    should_sniff_counter->Add(1);
    return false;
  }

  static const char* const kSniffableTypes[] = {
    // Many web servers are misconfigured to send text/plain for many
    // different types of content.
    "text/plain",
    // We want to sniff application/octet-stream for
    // application/x-chrome-extension, but nothing else.
    "application/octet-stream",
    // XHTML and Atom/RSS feeds are often served as plain xml instead of
    // their more specific mime types.
    "text/xml",
    "application/xml",
    // Check for false Microsoft Office MIME types.
    "application/msword",
    "application/vnd.ms-excel",
    "application/vnd.ms-powerpoint",
    "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
    "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
    "application/vnd.openxmlformats-officedocument.presentationml.presentation",
    "application/vnd.ms-excel.sheet.macroenabled.12",
    "application/vnd.ms-word.document.macroenabled.12",
    "application/vnd.ms-powerpoint.presentation.macroenabled.12",
    "application/mspowerpoint",
    "application/msexcel",
    "application/vnd.ms-word",
    "application/vnd.ms-word.document.12",
    "application/vnd.msword",
  };
  static base::HistogramBase* counter(NULL);
  if (!counter) {
    counter = UMASnifferHistogramGet("mime_sniffer.kSniffableTypes2",
                                     arraysize(kSniffableTypes) + 1);
  }
  for (size_t i = 0; i < arraysize(kSniffableTypes); ++i) {
    if (mime_type == kSniffableTypes[i]) {
      counter->Add(i);
      should_sniff_counter->Add(2);
      return true;
    }
  }
  if (IsUnknownMimeType(mime_type)) {
    // The web server didn't specify a content type or specified a mime
    // type that we ignore.
    counter->Add(arraysize(kSniffableTypes));
    should_sniff_counter->Add(2);
    return true;
  }
  should_sniff_counter->Add(1);
  return false;
}

bool SniffMimeType(const char* content,
                   size_t content_size,
                   const GURL& url,
                   const std::string& type_hint,
                   std::string* result) {
  DCHECK_LT(content_size, 1000000U);  // sanity check
  DCHECK(content);
  DCHECK(result);

  // By default, we assume we have enough content.
  // Each sniff routine may unset this if it wasn't provided enough content.
  bool have_enough_content = true;

  // By default, we'll return the type hint.
  // Each sniff routine may modify this if it has a better guess..
  result->assign(type_hint);

  // If the file has a Microsoft Office MIME type, we should only check that it
  // is a valid Office file.  Because this is the only reason we sniff files
  // with a Microsoft Office MIME type, we can return early.
  if (IsOfficeType(type_hint))
    return SniffForInvalidOfficeDocs(content, content_size, url, result);

  // Cache information about the type_hint
  const bool hint_is_unknown_mime_type = IsUnknownMimeType(type_hint);

  // First check for HTML
  if (hint_is_unknown_mime_type) {
    // We're only willing to sniff HTML if the server has not supplied a mime
    // type, or if the type it did supply indicates that it doesn't know what
    // the type should be.
    if (SniffForHTML(content, content_size, &have_enough_content, result))
      return true;  // We succeeded in sniffing HTML.  No more content needed.
  }

  // We're only willing to sniff for binary in 3 cases:
  // 1. The server has not supplied a mime type.
  // 2. The type it did supply indicates that it doesn't know what the type
  //    should be.
  // 3. The type is "text/plain" which is the default on some web servers and
  //    could be indicative of a mis-configuration that we shield the user from.
  const bool hint_is_text_plain = (type_hint == "text/plain");
  if (hint_is_unknown_mime_type || hint_is_text_plain) {
    if (!SniffBinary(content, content_size, &have_enough_content, result)) {
      // If the server said the content was text/plain and it doesn't appear
      // to be binary, then we trust it.
      if (hint_is_text_plain) {
        return have_enough_content;
      }
    }
  }

  // If we have plain XML, sniff XML subtypes.
  if (type_hint == "text/xml" || type_hint == "application/xml") {
    // We're not interested in sniffing these types for images and the like.
    // Instead, we're looking explicitly for a feed.  If we don't find one
    // we're done and return early.
    if (SniffXML(content, content_size, &have_enough_content, result))
      return true;
    return have_enough_content;
  }

  // CRX files (Chrome extensions) have a special sniffing algorithm. It is
  // tighter than the others because we don't have to match legacy behavior.
  if (SniffCRX(content, content_size, url, type_hint,
               &have_enough_content, result))
    return true;

  // Check the file extension and magic numbers to see if this is an Office
  // document.  This needs to be checked before the general magic numbers
  // because zip files and Office documents (OOXML) have the same magic number.
  if (SniffForOfficeDocs(content, content_size, url,
                         &have_enough_content, result))
    return true;  // We've matched a magic number.  No more content needed.

  // We're not interested in sniffing for magic numbers when the type_hint
  // is application/octet-stream.  Time to bail out.
  if (type_hint == "application/octet-stream")
    return have_enough_content;

  // Now we look in our large table of magic numbers to see if we can find
  // anything that matches the content.
  if (SniffForMagicNumbers(content, content_size,
                           &have_enough_content, result))
    return true;  // We've matched a magic number.  No more content needed.

  return have_enough_content;
}

bool SniffMimeTypeFromLocalData(const char* content,
                                size_t size,
                                std::string* result) {
  // First check the extra table.
  if (CheckForMagicNumbers(content, size, kExtraMagicNumbers,
                           arraysize(kExtraMagicNumbers), NULL, result))
    return true;
  // Finally check the original table.
  return CheckForMagicNumbers(content, size, kMagicNumbers,
                              arraysize(kMagicNumbers), NULL, result);
}

bool LooksLikeBinary(const char* content, size_t size) {
  // The definition of "binary bytes" is from the spec at
  // https://mimesniff.spec.whatwg.org/#binary-data-byte
  //
  // The bytes which are considered to be "binary" are all < 0x20. Encode them
  // one bit per byte, with 1 for a "binary" bit, and 0 for a "text" bit. The
  // least-significant bit represents byte 0x00, the most-significant bit
  // represents byte 0x1F.
  const uint32_t kBinaryBits =
      ~(1u << '\t' | 1u << '\n' | 1u << '\r' | 1u << '\f' | 1u << '\x1b');
  for (size_t i = 0; i < size; ++i) {
    uint8_t byte = static_cast<uint8_t>(content[i]);
    if (byte < 0x20 && (kBinaryBits & (1u << byte)))
      return true;
  }
  return false;
}

}  // namespace net