1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
|
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/base/network_quality_estimator.h"
#include <float.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <utility>
#include <vector>
#include "base/logging.h"
#include "base/metrics/histogram.h"
#include "base/metrics/histogram_base.h"
#include "base/strings/string_number_conversions.h"
#include "build/build_config.h"
#include "net/base/load_flags.h"
#include "net/base/load_timing_info.h"
#include "net/base/network_interfaces.h"
#include "net/base/url_util.h"
#include "net/url_request/url_request.h"
#include "url/gurl.h"
#if defined(OS_ANDROID)
#include "net/android/network_library.h"
#endif // OS_ANDROID
namespace {
// Default value of the half life (in seconds) for computing time weighted
// percentiles. Every half life, the weight of all observations reduces by
// half. Lowering the half life would reduce the weight of older values faster.
const int kDefaultHalfLifeSeconds = 60;
// Name of the variation parameter that holds the value of the half life (in
// seconds) of the observations.
const char kHalfLifeSecondsParamName[] = "HalfLifeSeconds";
// Returns a descriptive name corresponding to |connection_type|.
const char* GetNameForConnectionType(
net::NetworkChangeNotifier::ConnectionType connection_type) {
switch (connection_type) {
case net::NetworkChangeNotifier::CONNECTION_UNKNOWN:
return "Unknown";
case net::NetworkChangeNotifier::CONNECTION_ETHERNET:
return "Ethernet";
case net::NetworkChangeNotifier::CONNECTION_WIFI:
return "WiFi";
case net::NetworkChangeNotifier::CONNECTION_2G:
return "2G";
case net::NetworkChangeNotifier::CONNECTION_3G:
return "3G";
case net::NetworkChangeNotifier::CONNECTION_4G:
return "4G";
case net::NetworkChangeNotifier::CONNECTION_NONE:
return "None";
case net::NetworkChangeNotifier::CONNECTION_BLUETOOTH:
return "Bluetooth";
default:
NOTREACHED();
break;
}
return "";
}
// Suffix of the name of the variation parameter that contains the default RTT
// observation (in milliseconds). Complete name of the variation parameter
// would be |ConnectionType|.|kDefaultRTTMsecObservationSuffix| where
// |ConnectionType| is from |kConnectionTypeNames|. For example, variation
// parameter for Wi-Fi would be "WiFi.DefaultMedianRTTMsec".
const char kDefaultRTTMsecObservationSuffix[] = ".DefaultMedianRTTMsec";
// Suffix of the name of the variation parameter that contains the default
// downstream throughput observation (in Kbps). Complete name of the variation
// parameter would be |ConnectionType|.|kDefaultKbpsObservationSuffix| where
// |ConnectionType| is from |kConnectionTypeNames|. For example, variation
// parameter for Wi-Fi would be "WiFi.DefaultMedianKbps".
const char kDefaultKbpsObservationSuffix[] = ".DefaultMedianKbps";
// Computes and returns the weight multiplier per second.
// |variation_params| is the map containing all field trial parameters
// related to NetworkQualityEstimator field trial.
double GetWeightMultiplierPerSecond(
const std::map<std::string, std::string>& variation_params) {
int half_life_seconds = kDefaultHalfLifeSeconds;
int32_t variations_value = 0;
auto it = variation_params.find(kHalfLifeSecondsParamName);
if (it != variation_params.end() &&
base::StringToInt(it->second, &variations_value) &&
variations_value >= 1) {
half_life_seconds = variations_value;
}
DCHECK_GT(half_life_seconds, 0);
return exp(log(0.5) / half_life_seconds);
}
// Returns the histogram that should be used to record the given statistic.
// |max_limit| is the maximum value that can be stored in the histogram.
base::HistogramBase* GetHistogram(
const std::string& statistic_name,
net::NetworkChangeNotifier::ConnectionType type,
int32_t max_limit) {
const base::LinearHistogram::Sample kLowerLimit = 1;
DCHECK_GT(max_limit, kLowerLimit);
const size_t kBucketCount = 50;
// Prefix of network quality estimator histograms.
const char prefix[] = "NQE.";
return base::Histogram::FactoryGet(
prefix + statistic_name + GetNameForConnectionType(type), kLowerLimit,
max_limit, kBucketCount, base::HistogramBase::kUmaTargetedHistogramFlag);
}
} // namespace
namespace net {
const int32_t NetworkQualityEstimator::kInvalidThroughput = 0;
NetworkQualityEstimator::NetworkQualityEstimator(
scoped_ptr<ExternalEstimateProvider> external_estimates_provider,
const std::map<std::string, std::string>& variation_params)
: NetworkQualityEstimator(std::move(external_estimates_provider),
variation_params,
false,
false) {}
NetworkQualityEstimator::NetworkQualityEstimator(
scoped_ptr<ExternalEstimateProvider> external_estimates_provider,
const std::map<std::string, std::string>& variation_params,
bool allow_local_host_requests_for_tests,
bool allow_smaller_responses_for_tests)
: allow_localhost_requests_(allow_local_host_requests_for_tests),
allow_small_responses_(allow_smaller_responses_for_tests),
last_connection_change_(base::TimeTicks::Now()),
current_network_id_(
NetworkID(NetworkChangeNotifier::ConnectionType::CONNECTION_UNKNOWN,
std::string())),
downstream_throughput_kbps_observations_(
GetWeightMultiplierPerSecond(variation_params)),
rtt_msec_observations_(GetWeightMultiplierPerSecond(variation_params)),
external_estimate_provider_(std::move(external_estimates_provider)) {
static_assert(kMinRequestDurationMicroseconds > 0,
"Minimum request duration must be > 0");
static_assert(kDefaultHalfLifeSeconds > 0,
"Default half life duration must be > 0");
static_assert(kMaximumNetworkQualityCacheSize > 0,
"Size of the network quality cache must be > 0");
// This limit should not be increased unless the logic for removing the
// oldest cache entry is rewritten to use a doubly-linked-list LRU queue.
static_assert(kMaximumNetworkQualityCacheSize <= 10,
"Size of the network quality cache must <= 10");
ObtainOperatingParams(variation_params);
NetworkChangeNotifier::AddConnectionTypeObserver(this);
if (external_estimate_provider_) {
RecordExternalEstimateProviderMetrics(
EXTERNAL_ESTIMATE_PROVIDER_STATUS_AVAILABLE);
external_estimate_provider_->SetUpdatedEstimateDelegate(this);
QueryExternalEstimateProvider();
} else {
RecordExternalEstimateProviderMetrics(
EXTERNAL_ESTIMATE_PROVIDER_STATUS_NOT_AVAILABLE);
}
current_network_id_ = GetCurrentNetworkID();
AddDefaultEstimates();
}
// static
const base::TimeDelta NetworkQualityEstimator::InvalidRTT() {
return base::TimeDelta::Max();
}
void NetworkQualityEstimator::ObtainOperatingParams(
const std::map<std::string, std::string>& variation_params) {
DCHECK(thread_checker_.CalledOnValidThread());
for (size_t i = 0; i <= NetworkChangeNotifier::CONNECTION_LAST; ++i) {
NetworkChangeNotifier::ConnectionType type =
static_cast<NetworkChangeNotifier::ConnectionType>(i);
DCHECK_EQ(InvalidRTT(), default_observations_[i].rtt());
DCHECK_EQ(kInvalidThroughput,
default_observations_[i].downstream_throughput_kbps());
int32_t variations_value = kMinimumRTTVariationParameterMsec - 1;
// Name of the parameter that holds the RTT value for this connection type.
std::string rtt_parameter_name =
std::string(GetNameForConnectionType(type))
.append(kDefaultRTTMsecObservationSuffix);
auto it = variation_params.find(rtt_parameter_name);
if (it != variation_params.end() &&
base::StringToInt(it->second, &variations_value) &&
variations_value >= kMinimumRTTVariationParameterMsec) {
default_observations_[i] =
NetworkQuality(base::TimeDelta::FromMilliseconds(variations_value),
default_observations_[i].downstream_throughput_kbps());
}
variations_value = kMinimumThroughputVariationParameterKbps - 1;
// Name of the parameter that holds the Kbps value for this connection
// type.
std::string kbps_parameter_name =
std::string(GetNameForConnectionType(type))
.append(kDefaultKbpsObservationSuffix);
it = variation_params.find(kbps_parameter_name);
if (it != variation_params.end() &&
base::StringToInt(it->second, &variations_value) &&
variations_value >= kMinimumThroughputVariationParameterKbps) {
default_observations_[i] =
NetworkQuality(default_observations_[i].rtt(), variations_value);
}
}
}
void NetworkQualityEstimator::AddDefaultEstimates() {
DCHECK(thread_checker_.CalledOnValidThread());
if (default_observations_[current_network_id_.type].rtt() != InvalidRTT()) {
RttObservation rtt_observation(
default_observations_[current_network_id_.type].rtt(),
base::TimeTicks::Now(), DEFAULT_FROM_PLATFORM);
rtt_msec_observations_.AddObservation(rtt_observation);
NotifyObserversOfRTT(rtt_observation);
}
if (default_observations_[current_network_id_.type]
.downstream_throughput_kbps() != kInvalidThroughput) {
ThroughputObservation throughput_observation(
default_observations_[current_network_id_.type]
.downstream_throughput_kbps(),
base::TimeTicks::Now(), DEFAULT_FROM_PLATFORM);
downstream_throughput_kbps_observations_.AddObservation(
throughput_observation);
NotifyObserversOfThroughput(throughput_observation);
}
}
NetworkQualityEstimator::~NetworkQualityEstimator() {
DCHECK(thread_checker_.CalledOnValidThread());
NetworkChangeNotifier::RemoveConnectionTypeObserver(this);
}
void NetworkQualityEstimator::NotifyHeadersReceived(const URLRequest& request) {
DCHECK(thread_checker_.CalledOnValidThread());
if (!RequestProvidesUsefulObservations(request))
return;
// Update |estimated_median_network_quality_| if this is a main frame request.
if (request.load_flags() & LOAD_MAIN_FRAME) {
estimated_median_network_quality_ = NetworkQuality(
GetRTTEstimateInternal(base::TimeTicks(), 50),
GetDownlinkThroughputKbpsEstimateInternal(base::TimeTicks(), 50));
}
base::TimeTicks now = base::TimeTicks::Now();
LoadTimingInfo load_timing_info;
request.GetLoadTimingInfo(&load_timing_info);
// If the load timing info is unavailable, it probably means that the request
// did not go over the network.
if (load_timing_info.send_start.is_null() ||
load_timing_info.receive_headers_end.is_null()) {
return;
}
// Time when the resource was requested.
base::TimeTicks request_start_time = load_timing_info.send_start;
// Time when the headers were received.
base::TimeTicks headers_received_time = load_timing_info.receive_headers_end;
// Duration between when the resource was requested and when response
// headers were received.
base::TimeDelta observed_rtt = headers_received_time - request_start_time;
DCHECK_GE(observed_rtt, base::TimeDelta());
if (observed_rtt < peak_network_quality_.rtt()) {
peak_network_quality_ = NetworkQuality(
observed_rtt, peak_network_quality_.downstream_throughput_kbps());
}
RttObservation rtt_observation(observed_rtt, now, URL_REQUEST);
rtt_msec_observations_.AddObservation(rtt_observation);
NotifyObserversOfRTT(rtt_observation);
// Compare the RTT observation with the estimated value and record it.
if (estimated_median_network_quality_.rtt() != InvalidRTT()) {
RecordRTTUMA(estimated_median_network_quality_.rtt().InMilliseconds(),
observed_rtt.InMilliseconds());
}
}
void NetworkQualityEstimator::NotifyRequestCompleted(
const URLRequest& request) {
DCHECK(thread_checker_.CalledOnValidThread());
if (!RequestProvidesUsefulObservations(request))
return;
base::TimeTicks now = base::TimeTicks::Now();
LoadTimingInfo load_timing_info;
request.GetLoadTimingInfo(&load_timing_info);
// If the load timing info is unavailable, it probably means that the request
// did not go over the network.
if (load_timing_info.send_start.is_null() ||
load_timing_info.receive_headers_end.is_null()) {
return;
}
// Time since the resource was requested.
// TODO(tbansal): Change the start time to receive_headers_end, once we use
// NetworkActivityMonitor.
base::TimeDelta request_start_to_completed =
now - load_timing_info.send_start;
DCHECK_GE(request_start_to_completed, base::TimeDelta());
// Ignore tiny transfers which will not produce accurate rates.
// Ignore short duration transfers.
// Skip the checks if |allow_small_responses_| is true.
if (!allow_small_responses_ &&
(request.GetTotalReceivedBytes() < kMinTransferSizeInBytes ||
request_start_to_completed < base::TimeDelta::FromMicroseconds(
kMinRequestDurationMicroseconds))) {
return;
}
double downstream_kbps = request.GetTotalReceivedBytes() * 8.0 / 1000.0 /
request_start_to_completed.InSecondsF();
DCHECK_GE(downstream_kbps, 0.0);
// Check overflow errors. This may happen if the downstream_kbps is more than
// 2 * 10^9 (= 2000 Gbps).
if (downstream_kbps >= std::numeric_limits<int32_t>::max())
downstream_kbps = std::numeric_limits<int32_t>::max();
int32_t downstream_kbps_as_integer = static_cast<int32_t>(downstream_kbps);
// Round up |downstream_kbps_as_integer|. If the |downstream_kbps_as_integer|
// is less than 1, it is set to 1 to differentiate from case when there is no
// connection.
if (downstream_kbps - downstream_kbps_as_integer > 0)
downstream_kbps_as_integer++;
DCHECK_GT(downstream_kbps_as_integer, 0.0);
if (downstream_kbps_as_integer >
peak_network_quality_.downstream_throughput_kbps())
peak_network_quality_ =
NetworkQuality(peak_network_quality_.rtt(), downstream_kbps_as_integer);
ThroughputObservation throughput_observation(downstream_kbps_as_integer, now,
URL_REQUEST);
downstream_throughput_kbps_observations_.AddObservation(
throughput_observation);
NotifyObserversOfThroughput(throughput_observation);
}
void NetworkQualityEstimator::AddRTTObserver(RTTObserver* rtt_observer) {
DCHECK(thread_checker_.CalledOnValidThread());
rtt_observer_list_.AddObserver(rtt_observer);
}
void NetworkQualityEstimator::RemoveRTTObserver(RTTObserver* rtt_observer) {
DCHECK(thread_checker_.CalledOnValidThread());
rtt_observer_list_.RemoveObserver(rtt_observer);
}
void NetworkQualityEstimator::AddThroughputObserver(
ThroughputObserver* throughput_observer) {
DCHECK(thread_checker_.CalledOnValidThread());
throughput_observer_list_.AddObserver(throughput_observer);
}
void NetworkQualityEstimator::RemoveThroughputObserver(
ThroughputObserver* throughput_observer) {
DCHECK(thread_checker_.CalledOnValidThread());
throughput_observer_list_.RemoveObserver(throughput_observer);
}
void NetworkQualityEstimator::RecordRTTUMA(int32_t estimated_value_msec,
int32_t actual_value_msec) const {
DCHECK(thread_checker_.CalledOnValidThread());
// Record the difference between the actual and the estimated value.
if (estimated_value_msec >= actual_value_msec) {
base::HistogramBase* difference_rtt =
GetHistogram("DifferenceRTTEstimatedAndActual.",
current_network_id_.type, 10 * 1000); // 10 seconds
difference_rtt->Add(estimated_value_msec - actual_value_msec);
} else {
base::HistogramBase* difference_rtt =
GetHistogram("DifferenceRTTActualAndEstimated.",
current_network_id_.type, 10 * 1000); // 10 seconds
difference_rtt->Add(actual_value_msec - estimated_value_msec);
}
// Record all the RTT observations.
base::HistogramBase* rtt_observations =
GetHistogram("RTTObservations.", current_network_id_.type,
10 * 1000); // 10 seconds upper bound
rtt_observations->Add(actual_value_msec);
if (actual_value_msec == 0)
return;
int32_t ratio = (estimated_value_msec * 100) / actual_value_msec;
// Record the accuracy of estimation by recording the ratio of estimated
// value to the actual value.
base::HistogramBase* ratio_median_rtt = GetHistogram(
"RatioEstimatedToActualRTT.", current_network_id_.type, 1000);
ratio_median_rtt->Add(ratio);
}
bool NetworkQualityEstimator::RequestProvidesUsefulObservations(
const URLRequest& request) const {
return request.url().is_valid() &&
(allow_localhost_requests_ || !IsLocalhost(request.url().host())) &&
request.url().SchemeIsHTTPOrHTTPS() &&
// Verify that response headers are received, so it can be ensured that
// response is not cached.
!request.response_info().response_time.is_null() &&
!request.was_cached() &&
request.creation_time() >= last_connection_change_;
}
void NetworkQualityEstimator::RecordExternalEstimateProviderMetrics(
NQEExternalEstimateProviderStatus status) const {
UMA_HISTOGRAM_ENUMERATION("NQE.ExternalEstimateProviderStatus", status,
EXTERNAL_ESTIMATE_PROVIDER_STATUS_BOUNDARY);
}
void NetworkQualityEstimator::OnConnectionTypeChanged(
NetworkChangeNotifier::ConnectionType type) {
DCHECK(thread_checker_.CalledOnValidThread());
if (peak_network_quality_.rtt() != InvalidRTT()) {
switch (current_network_id_.type) {
case NetworkChangeNotifier::CONNECTION_UNKNOWN:
UMA_HISTOGRAM_TIMES("NQE.FastestRTT.Unknown",
peak_network_quality_.rtt());
break;
case NetworkChangeNotifier::CONNECTION_ETHERNET:
UMA_HISTOGRAM_TIMES("NQE.FastestRTT.Ethernet",
peak_network_quality_.rtt());
break;
case NetworkChangeNotifier::CONNECTION_WIFI:
UMA_HISTOGRAM_TIMES("NQE.FastestRTT.Wifi", peak_network_quality_.rtt());
break;
case NetworkChangeNotifier::CONNECTION_2G:
UMA_HISTOGRAM_TIMES("NQE.FastestRTT.2G", peak_network_quality_.rtt());
break;
case NetworkChangeNotifier::CONNECTION_3G:
UMA_HISTOGRAM_TIMES("NQE.FastestRTT.3G", peak_network_quality_.rtt());
break;
case NetworkChangeNotifier::CONNECTION_4G:
UMA_HISTOGRAM_TIMES("NQE.FastestRTT.4G", peak_network_quality_.rtt());
break;
case NetworkChangeNotifier::CONNECTION_NONE:
UMA_HISTOGRAM_TIMES("NQE.FastestRTT.None", peak_network_quality_.rtt());
break;
case NetworkChangeNotifier::CONNECTION_BLUETOOTH:
UMA_HISTOGRAM_TIMES("NQE.FastestRTT.Bluetooth",
peak_network_quality_.rtt());
break;
default:
NOTREACHED() << "Unexpected connection type = "
<< current_network_id_.type;
break;
}
}
if (peak_network_quality_.downstream_throughput_kbps() !=
kInvalidThroughput) {
switch (current_network_id_.type) {
case NetworkChangeNotifier::CONNECTION_UNKNOWN:
UMA_HISTOGRAM_COUNTS(
"NQE.PeakKbps.Unknown",
peak_network_quality_.downstream_throughput_kbps());
break;
case NetworkChangeNotifier::CONNECTION_ETHERNET:
UMA_HISTOGRAM_COUNTS(
"NQE.PeakKbps.Ethernet",
peak_network_quality_.downstream_throughput_kbps());
break;
case NetworkChangeNotifier::CONNECTION_WIFI:
UMA_HISTOGRAM_COUNTS(
"NQE.PeakKbps.Wifi",
peak_network_quality_.downstream_throughput_kbps());
break;
case NetworkChangeNotifier::CONNECTION_2G:
UMA_HISTOGRAM_COUNTS(
"NQE.PeakKbps.2G",
peak_network_quality_.downstream_throughput_kbps());
break;
case NetworkChangeNotifier::CONNECTION_3G:
UMA_HISTOGRAM_COUNTS(
"NQE.PeakKbps.3G",
peak_network_quality_.downstream_throughput_kbps());
break;
case NetworkChangeNotifier::CONNECTION_4G:
UMA_HISTOGRAM_COUNTS(
"NQE.PeakKbps.4G",
peak_network_quality_.downstream_throughput_kbps());
break;
case NetworkChangeNotifier::CONNECTION_NONE:
UMA_HISTOGRAM_COUNTS(
"NQE.PeakKbps.None",
peak_network_quality_.downstream_throughput_kbps());
break;
case NetworkChangeNotifier::CONNECTION_BLUETOOTH:
UMA_HISTOGRAM_COUNTS(
"NQE.PeakKbps.Bluetooth",
peak_network_quality_.downstream_throughput_kbps());
break;
default:
NOTREACHED() << "Unexpected connection type = "
<< current_network_id_.type;
break;
}
}
base::TimeDelta rtt = GetRTTEstimateInternal(base::TimeTicks(), 50);
if (rtt != InvalidRTT()) {
// Add the 50th percentile value.
base::HistogramBase* rtt_percentile =
GetHistogram("RTT.Percentile50.", current_network_id_.type,
10 * 1000); // 10 seconds
rtt_percentile->Add(rtt.InMilliseconds());
// Add the remaining percentile values.
static const int kPercentiles[] = {0, 10, 90, 100};
for (size_t i = 0; i < arraysize(kPercentiles); ++i) {
rtt = GetRTTEstimateInternal(base::TimeTicks(), kPercentiles[i]);
rtt_percentile = GetHistogram(
"RTT.Percentile" + base::IntToString(kPercentiles[i]) + ".",
current_network_id_.type, 10 * 1000); // 10 seconds
rtt_percentile->Add(rtt.InMilliseconds());
}
}
// Write the estimates of the previous network to the cache.
CacheNetworkQualityEstimate();
// Clear the local state.
last_connection_change_ = base::TimeTicks::Now();
peak_network_quality_ = NetworkQuality();
downstream_throughput_kbps_observations_.Clear();
rtt_msec_observations_.Clear();
current_network_id_ = GetCurrentNetworkID();
QueryExternalEstimateProvider();
// Read any cached estimates for the new network. If cached estimates are
// unavailable, add the default estimates.
if (!ReadCachedNetworkQualityEstimate())
AddDefaultEstimates();
estimated_median_network_quality_ = NetworkQuality();
}
bool NetworkQualityEstimator::GetRTTEstimate(base::TimeDelta* rtt) const {
DCHECK(thread_checker_.CalledOnValidThread());
DCHECK(rtt);
if (rtt_msec_observations_.Size() == 0) {
*rtt = InvalidRTT();
return false;
}
*rtt = GetRTTEstimateInternal(base::TimeTicks(), 50);
return (*rtt != InvalidRTT());
}
bool NetworkQualityEstimator::GetDownlinkThroughputKbpsEstimate(
int32_t* kbps) const {
DCHECK(thread_checker_.CalledOnValidThread());
DCHECK(kbps);
if (downstream_throughput_kbps_observations_.Size() == 0) {
*kbps = kInvalidThroughput;
return false;
}
*kbps = GetDownlinkThroughputKbpsEstimateInternal(base::TimeTicks(), 50);
return (*kbps != kInvalidThroughput);
}
bool NetworkQualityEstimator::GetRecentMedianRTT(
const base::TimeTicks& begin_timestamp,
base::TimeDelta* rtt) const {
DCHECK(thread_checker_.CalledOnValidThread());
DCHECK(rtt);
*rtt = GetRTTEstimateInternal(begin_timestamp, 50);
return (*rtt != InvalidRTT());
}
bool NetworkQualityEstimator::GetRecentMedianDownlinkThroughputKbps(
const base::TimeTicks& begin_timestamp,
int32_t* kbps) const {
DCHECK(thread_checker_.CalledOnValidThread());
DCHECK(kbps);
*kbps = GetDownlinkThroughputKbpsEstimateInternal(begin_timestamp, 50);
return (*kbps != kInvalidThroughput);
}
template <typename ValueType>
NetworkQualityEstimator::ObservationBuffer<ValueType>::ObservationBuffer(
double weight_multiplier_per_second)
: weight_multiplier_per_second_(weight_multiplier_per_second) {
static_assert(kMaximumObservationsBufferSize > 0U,
"Minimum size of observation buffer must be > 0");
DCHECK_GE(weight_multiplier_per_second_, 0.0);
DCHECK_LE(weight_multiplier_per_second_, 1.0);
}
template <typename ValueType>
NetworkQualityEstimator::ObservationBuffer<ValueType>::~ObservationBuffer() {}
base::TimeDelta NetworkQualityEstimator::GetRTTEstimateInternal(
const base::TimeTicks& begin_timestamp,
int percentile) const {
DCHECK(thread_checker_.CalledOnValidThread());
DCHECK_GE(percentile, 0);
DCHECK_LE(percentile, 100);
if (rtt_msec_observations_.Size() == 0)
return InvalidRTT();
// RTT observations are sorted by duration from shortest to longest, thus
// a higher percentile RTT will have a longer RTT than a lower percentile.
base::TimeDelta rtt = InvalidRTT();
rtt_msec_observations_.GetPercentile(begin_timestamp, &rtt, percentile);
return rtt;
}
int32_t NetworkQualityEstimator::GetDownlinkThroughputKbpsEstimateInternal(
const base::TimeTicks& begin_timestamp,
int percentile) const {
DCHECK(thread_checker_.CalledOnValidThread());
DCHECK_GE(percentile, 0);
DCHECK_LE(percentile, 100);
if (downstream_throughput_kbps_observations_.Size() == 0)
return kInvalidThroughput;
// Throughput observations are sorted by kbps from slowest to fastest,
// thus a higher percentile throughput will be faster than a lower one.
int32_t kbps = kInvalidThroughput;
downstream_throughput_kbps_observations_.GetPercentile(begin_timestamp, &kbps,
100 - percentile);
return kbps;
}
template <typename ValueType>
void NetworkQualityEstimator::ObservationBuffer<ValueType>::
ComputeWeightedObservations(
const base::TimeTicks& begin_timestamp,
std::vector<WeightedObservation<ValueType>>& weighted_observations,
double* total_weight) const {
weighted_observations.clear();
double total_weight_observations = 0.0;
base::TimeTicks now = base::TimeTicks::Now();
for (const auto& observation : observations_) {
if (observation.timestamp < begin_timestamp)
continue;
base::TimeDelta time_since_sample_taken = now - observation.timestamp;
double weight =
pow(weight_multiplier_per_second_, time_since_sample_taken.InSeconds());
weight = std::max(DBL_MIN, std::min(1.0, weight));
weighted_observations.push_back(
WeightedObservation<ValueType>(observation.value, weight));
total_weight_observations += weight;
}
// Sort the samples by value in ascending order.
std::sort(weighted_observations.begin(), weighted_observations.end());
*total_weight = total_weight_observations;
}
template <typename ValueType>
bool NetworkQualityEstimator::ObservationBuffer<ValueType>::GetPercentile(
const base::TimeTicks& begin_timestamp,
ValueType* result,
int percentile) const {
DCHECK(result);
// Stores WeightedObservation in increasing order of value.
std::vector<WeightedObservation<ValueType>> weighted_observations;
// Total weight of all observations in |weighted_observations|.
double total_weight = 0.0;
ComputeWeightedObservations(begin_timestamp, weighted_observations,
&total_weight);
if (weighted_observations.empty())
return false;
DCHECK(!weighted_observations.empty());
DCHECK_GT(total_weight, 0.0);
// weighted_observations may have a smaller size than observations_ since the
// former contains only the observations later than begin_timestamp.
DCHECK_GE(observations_.size(), weighted_observations.size());
double desired_weight = percentile / 100.0 * total_weight;
double cumulative_weight_seen_so_far = 0.0;
for (const auto& weighted_observation : weighted_observations) {
cumulative_weight_seen_so_far += weighted_observation.weight;
if (cumulative_weight_seen_so_far >= desired_weight) {
*result = weighted_observation.value;
return true;
}
}
// Computation may reach here due to floating point errors. This may happen
// if |percentile| was 100 (or close to 100), and |desired_weight| was
// slightly larger than |total_weight| (due to floating point errors).
// In this case, we return the highest |value| among all observations.
// This is same as value of the last observation in the sorted vector.
*result = weighted_observations.at(weighted_observations.size() - 1).value;
return true;
}
NetworkQualityEstimator::NetworkID
NetworkQualityEstimator::GetCurrentNetworkID() const {
DCHECK(thread_checker_.CalledOnValidThread());
// TODO(tbansal): crbug.com/498068 Add NetworkQualityEstimatorAndroid class
// that overrides this method on the Android platform.
// It is possible that the connection type changed between when
// GetConnectionType() was called and when the API to determine the
// network name was called. Check if that happened and retry until the
// connection type stabilizes. This is an imperfect solution but should
// capture majority of cases, and should not significantly affect estimates
// (that are approximate to begin with).
while (true) {
NetworkQualityEstimator::NetworkID network_id(
NetworkChangeNotifier::GetConnectionType(), std::string());
switch (network_id.type) {
case NetworkChangeNotifier::ConnectionType::CONNECTION_UNKNOWN:
case NetworkChangeNotifier::ConnectionType::CONNECTION_NONE:
case NetworkChangeNotifier::ConnectionType::CONNECTION_BLUETOOTH:
case NetworkChangeNotifier::ConnectionType::CONNECTION_ETHERNET:
break;
case NetworkChangeNotifier::ConnectionType::CONNECTION_WIFI:
#if defined(OS_ANDROID) || defined(OS_LINUX) || defined(OS_CHROMEOS) || \
defined(OS_WIN)
network_id.id = GetWifiSSID();
#endif
break;
case NetworkChangeNotifier::ConnectionType::CONNECTION_2G:
case NetworkChangeNotifier::ConnectionType::CONNECTION_3G:
case NetworkChangeNotifier::ConnectionType::CONNECTION_4G:
#if defined(OS_ANDROID)
network_id.id = android::GetTelephonyNetworkOperator();
#endif
break;
default:
NOTREACHED() << "Unexpected connection type = " << network_id.type;
break;
}
if (network_id.type == NetworkChangeNotifier::GetConnectionType())
return network_id;
}
NOTREACHED();
}
bool NetworkQualityEstimator::ReadCachedNetworkQualityEstimate() {
DCHECK(thread_checker_.CalledOnValidThread());
// If the network name is unavailable, caching should not be performed.
if (current_network_id_.id.empty())
return false;
CachedNetworkQualities::const_iterator it =
cached_network_qualities_.find(current_network_id_);
if (it == cached_network_qualities_.end())
return false;
NetworkQuality network_quality(it->second.network_quality());
DCHECK_NE(InvalidRTT(), network_quality.rtt());
DCHECK_NE(kInvalidThroughput, network_quality.downstream_throughput_kbps());
ThroughputObservation througphput_observation(
network_quality.downstream_throughput_kbps(), base::TimeTicks::Now(),
CACHED_ESTIMATE);
downstream_throughput_kbps_observations_.AddObservation(
througphput_observation);
NotifyObserversOfThroughput(througphput_observation);
RttObservation rtt_observation(network_quality.rtt(), base::TimeTicks::Now(),
CACHED_ESTIMATE);
rtt_msec_observations_.AddObservation(rtt_observation);
NotifyObserversOfRTT(rtt_observation);
return true;
}
void NetworkQualityEstimator::OnUpdatedEstimateAvailable() {
DCHECK(thread_checker_.CalledOnValidThread());
DCHECK(external_estimate_provider_);
RecordExternalEstimateProviderMetrics(
EXTERNAL_ESTIMATE_PROVIDER_STATUS_CALLBACK);
QueryExternalEstimateProvider();
}
void NetworkQualityEstimator::QueryExternalEstimateProvider() {
DCHECK(thread_checker_.CalledOnValidThread());
if (!external_estimate_provider_)
return;
RecordExternalEstimateProviderMetrics(
EXTERNAL_ESTIMATE_PROVIDER_STATUS_QUERIED);
base::TimeDelta time_since_last_update;
// Request a new estimate if estimate is not available, or if the available
// estimate is not fresh.
if (!external_estimate_provider_->GetTimeSinceLastUpdate(
&time_since_last_update) ||
time_since_last_update >
base::TimeDelta::FromMilliseconds(
kExternalEstimateProviderFreshnessDurationMsec)) {
// Request the external estimate provider for updated estimates. When the
// updates estimates are available, OnUpdatedEstimateAvailable() will be
// called.
external_estimate_provider_->Update();
return;
}
RecordExternalEstimateProviderMetrics(
EXTERNAL_ESTIMATE_PROVIDER_STATUS_QUERY_SUCCESSFUL);
base::TimeDelta rtt;
if (external_estimate_provider_->GetRTT(&rtt)) {
rtt_msec_observations_.AddObservation(
RttObservation(rtt, base::TimeTicks::Now(), EXTERNAL_ESTIMATE));
}
int32_t downstream_throughput_kbps;
if (external_estimate_provider_->GetDownstreamThroughputKbps(
&downstream_throughput_kbps)) {
downstream_throughput_kbps_observations_.AddObservation(
ThroughputObservation(downstream_throughput_kbps,
base::TimeTicks::Now(), EXTERNAL_ESTIMATE));
}
}
void NetworkQualityEstimator::CacheNetworkQualityEstimate() {
DCHECK(thread_checker_.CalledOnValidThread());
DCHECK_LE(cached_network_qualities_.size(),
static_cast<size_t>(kMaximumNetworkQualityCacheSize));
// If the network name is unavailable, caching should not be performed.
if (current_network_id_.id.empty())
return;
NetworkQuality network_quality = NetworkQuality(
GetRTTEstimateInternal(base::TimeTicks(), 50),
GetDownlinkThroughputKbpsEstimateInternal(base::TimeTicks(), 50));
if (network_quality.rtt() == InvalidRTT() ||
network_quality.downstream_throughput_kbps() == kInvalidThroughput) {
return;
}
if (cached_network_qualities_.size() == kMaximumNetworkQualityCacheSize) {
// Remove the oldest entry.
CachedNetworkQualities::iterator oldest_entry_iterator =
cached_network_qualities_.begin();
for (CachedNetworkQualities::iterator it =
cached_network_qualities_.begin();
it != cached_network_qualities_.end(); ++it) {
if ((it->second).OlderThan(oldest_entry_iterator->second))
oldest_entry_iterator = it;
}
cached_network_qualities_.erase(oldest_entry_iterator);
}
DCHECK_LT(cached_network_qualities_.size(),
static_cast<size_t>(kMaximumNetworkQualityCacheSize));
cached_network_qualities_.insert(std::make_pair(
current_network_id_, CachedNetworkQuality(network_quality)));
DCHECK_LE(cached_network_qualities_.size(),
static_cast<size_t>(kMaximumNetworkQualityCacheSize));
}
scoped_ptr<SocketPerformanceWatcher>
NetworkQualityEstimator::CreateSocketPerformanceWatcher(
const Protocol protocol) {
DCHECK(thread_checker_.CalledOnValidThread());
return scoped_ptr<SocketPerformanceWatcher>(
new SocketPerformanceWatcher(protocol, this));
}
void NetworkQualityEstimator::OnUpdatedRTTAvailable(
const Protocol protocol,
const base::TimeDelta& rtt) {
DCHECK(thread_checker_.CalledOnValidThread());
switch (protocol) {
case PROTOCOL_TCP:
NotifyObserversOfRTT(RttObservation(rtt, base::TimeTicks::Now(), TCP));
return;
case PROTOCOL_QUIC:
NotifyObserversOfRTT(RttObservation(rtt, base::TimeTicks::Now(), QUIC));
return;
default:
NOTREACHED();
}
}
void NetworkQualityEstimator::NotifyObserversOfRTT(
const RttObservation& observation) {
FOR_EACH_OBSERVER(
RTTObserver, rtt_observer_list_,
OnRTTObservation(observation.value.InMilliseconds(),
observation.timestamp, observation.source));
}
void NetworkQualityEstimator::NotifyObserversOfThroughput(
const ThroughputObservation& observation) {
FOR_EACH_OBSERVER(
ThroughputObserver, throughput_observer_list_,
OnThroughputObservation(observation.value, observation.timestamp,
observation.source));
}
NetworkQualityEstimator::CachedNetworkQuality::CachedNetworkQuality(
const NetworkQuality& network_quality)
: last_update_time_(base::TimeTicks::Now()),
network_quality_(network_quality) {
}
NetworkQualityEstimator::CachedNetworkQuality::CachedNetworkQuality(
const CachedNetworkQuality& other)
: last_update_time_(other.last_update_time_),
network_quality_(other.network_quality_) {
}
NetworkQualityEstimator::CachedNetworkQuality::~CachedNetworkQuality() {
}
bool NetworkQualityEstimator::CachedNetworkQuality::OlderThan(
const CachedNetworkQuality& cached_network_quality) const {
return last_update_time_ < cached_network_quality.last_update_time_;
}
NetworkQualityEstimator::NetworkQuality::NetworkQuality()
: NetworkQuality(NetworkQualityEstimator::InvalidRTT(),
NetworkQualityEstimator::kInvalidThroughput) {}
NetworkQualityEstimator::NetworkQuality::NetworkQuality(
const base::TimeDelta& rtt,
int32_t downstream_throughput_kbps)
: rtt_(rtt), downstream_throughput_kbps_(downstream_throughput_kbps) {
DCHECK_GE(rtt_, base::TimeDelta());
DCHECK_GE(downstream_throughput_kbps_, 0);
}
NetworkQualityEstimator::NetworkQuality::NetworkQuality(
const NetworkQuality& other)
: NetworkQuality(other.rtt_, other.downstream_throughput_kbps_) {}
NetworkQualityEstimator::NetworkQuality::~NetworkQuality() {}
NetworkQualityEstimator::NetworkQuality&
NetworkQualityEstimator::NetworkQuality::
operator=(const NetworkQuality& other) {
rtt_ = other.rtt_;
downstream_throughput_kbps_ = other.downstream_throughput_kbps_;
return *this;
}
} // namespace net
|