1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
|
// Copyright (c) 2008-2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/base/ssl_client_socket_mac.h"
#include "base/singleton.h"
#include "base/string_util.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/base/ssl_info.h"
// Welcome to Mac SSL. We've been waiting for you.
//
// The Mac SSL implementation is, like the Windows and NSS implementations, a
// giant state machine. This design constraint is due to the asynchronous nature
// of our underlying transport mechanism. We can call down to read/write on the
// network, but what happens is that either it completes immediately or returns
// saying that we'll get a callback sometime in the future. In that case, we
// have to return to our caller but pick up where we left off when we
// resume. Thus the fun.
//
// On Windows, we use Security Contexts, which are driven by us. We fetch data
// from the network, we call the context to decrypt the data, and so on. On the
// Mac, however, we provide Secure Transport with callbacks to get data from the
// network, and it calls us back to fetch the data from the network for
// it. Therefore, there are different sets of states in our respective state
// machines, fewer on the Mac because Secure Transport keeps a lot of its own
// state. The discussion about what each of the states means lives in comments
// in the DoLoop() function.
//
// Secure Transport is designed for use by either blocking or non-blocking
// network I/O. If, for example, you called SSLRead() to fetch data, Secure
// Transport will, unless it has some cached data, issue a read to your network
// callback read function to fetch it some more encrypted data. It's expecting
// one of two things. If your function is hooked up to a blocking source, then
// it'll block pending receipt of the data from the other end. That's fine, as
// when you return with the data, Secure Transport will do its thing. On the
// other hand, suppose that your socket is non-blocking and tells your function
// that it would block. Then you let Secure Transport know, and it'll tell the
// original caller that it would have blocked and that they need to call it
// "later."
//
// When's "later," though? We have fully-asynchronous networking, so we get a
// callback when our data's ready. But Secure Transport has no way for us to
// tell it that data has arrived, so we must re-execute the call that triggered
// the I/O (we rely on our state machine to do this). When we do so Secure
// Transport will ask once again for the data. Chances are that it'll be the
// same request as the previous time, but that's not actually guaranteed. But as
// long as we buffer what we have and keep track of where we were, it works
// quite well.
//
// Except for network writes. They shoot this plan straight to hell.
//
// Faking a blocking connection with an asynchronous connection (theoretically
// more powerful) simply doesn't work for writing. Suppose that Secure Transport
// requests a write of data to the network. With blocking I/O, we'd just block
// until the write completed, and with non-blocking I/O we'd know how many bytes
// we wrote before we would have blocked. But with the asynchronous I/O, the
// transport underneath us can tell us that it'll let us know sometime "later"
// whether or not things succeeded, and how many bytes were written. What do we
// return to Secure Transport? We can't return a byte count, but we can't return
// "later" as we're not guaranteed to be called in the future with the same data
// to write.
//
// So, like in any good relationship, we're forced to lie. Whenever Secure
// Transport asks for data to be written, we take it all and lie about it always
// being written. We spin in a loop (see SSLWriteCallback() and
// OnWriteComplete()) independent of the main state machine writing the data to
// the network, and get the data out. The main consequence of this independence
// from the state machine is that we require a full-duplex transport underneath
// us since we can't use it to keep our reading and writing
// straight. Fortunately, the NSS implementation also has this issue to deal
// with, so we share the same Libevent-based full-duplex TCP socket.
//
// A side comment on return values might be in order. Those who haven't taken
// the time to read the documentation (ahem, header comments) in our various
// files might be a bit surprised to see result values being treated as both
// lengths and errors. Like Shimmer, they are both. In both the case of
// immediate results as well as results returned in callbacks, a negative return
// value indicates an error, a zero return value indicates end-of-stream (for
// reads), and a positive return value indicates the number of bytes read or
// written. Thus, many functions start off with |if (result < 0) return
// result;|. That gets the error condition out of the way, and from that point
// forward the result can be treated as a length.
namespace net {
namespace {
int NetErrorFromOSStatus(OSStatus status) {
switch (status) {
case errSSLWouldBlock:
return ERR_IO_PENDING;
case errSSLIllegalParam:
case errSSLBadCipherSuite:
case errSSLBadConfiguration:
return ERR_INVALID_ARGUMENT;
case errSSLClosedNoNotify:
return ERR_CONNECTION_RESET;
case errSSLConnectionRefused:
return ERR_CONNECTION_REFUSED;
case errSSLClosedAbort:
return ERR_CONNECTION_ABORTED;
case errSSLInternal:
case errSSLCrypto:
case errSSLFatalAlert:
case errSSLProtocol:
return ERR_SSL_PROTOCOL_ERROR;
case errSSLHostNameMismatch:
return ERR_CERT_COMMON_NAME_INVALID;
case errSSLCertExpired:
case errSSLCertNotYetValid:
return ERR_CERT_DATE_INVALID;
case errSSLNoRootCert:
case errSSLUnknownRootCert:
return ERR_CERT_AUTHORITY_INVALID;
case errSSLXCertChainInvalid:
case errSSLBadCert:
return ERR_CERT_INVALID;
case errSSLPeerCertRevoked:
return ERR_CERT_REVOKED;
case errSSLClosedGraceful:
case noErr:
return OK;
case errSSLBadRecordMac:
case errSSLBufferOverflow:
case errSSLDecryptionFail:
case errSSLModuleAttach:
case errSSLNegotiation:
case errSSLRecordOverflow:
case errSSLSessionNotFound:
default:
LOG(WARNING) << "Unknown error " << status <<
" mapped to net::ERR_FAILED";
return ERR_FAILED;
}
}
OSStatus OSStatusFromNetError(int net_error) {
switch (net_error) {
case ERR_IO_PENDING:
return errSSLWouldBlock;
case ERR_INTERNET_DISCONNECTED:
case ERR_TIMED_OUT:
case ERR_CONNECTION_ABORTED:
case ERR_CONNECTION_RESET:
case ERR_CONNECTION_REFUSED:
case ERR_ADDRESS_UNREACHABLE:
case ERR_ADDRESS_INVALID:
return errSSLClosedAbort;
case OK:
return noErr;
default:
LOG(WARNING) << "Unknown error " << net_error <<
" mapped to errSSLIllegalParam";
return errSSLIllegalParam;
}
}
// Converts from a cipher suite to its key size. If the suite is marked with a
// **, it's not actually implemented in Secure Transport and won't be returned
// (but we'll code for it anyway). The reference here is
// http://www.opensource.apple.com/darwinsource/10.5.5/libsecurity_ssl-32463/lib/cipherSpecs.c
// Seriously, though, there has to be an API for this, but I can't find one.
// Anybody?
int KeySizeOfCipherSuite(SSLCipherSuite suite) {
switch (suite) {
// SSL 2 only
case SSL_RSA_WITH_DES_CBC_MD5:
return 56;
case SSL_RSA_WITH_3DES_EDE_CBC_MD5:
return 112;
case SSL_RSA_WITH_RC2_CBC_MD5:
case SSL_RSA_WITH_IDEA_CBC_MD5: // **
return 128;
case SSL_NO_SUCH_CIPHERSUITE: // **
return 0;
// SSL 2, 3, TLS
case SSL_NULL_WITH_NULL_NULL:
case SSL_RSA_WITH_NULL_MD5:
case SSL_RSA_WITH_NULL_SHA: // **
case SSL_FORTEZZA_DMS_WITH_NULL_SHA: // **
return 0;
case SSL_RSA_EXPORT_WITH_RC4_40_MD5:
case SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5:
case SSL_RSA_EXPORT_WITH_DES40_CBC_SHA:
case SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA: // **
case SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA: // **
case SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA:
case SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA:
case SSL_DH_anon_EXPORT_WITH_RC4_40_MD5:
case SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA:
return 40;
case SSL_RSA_WITH_DES_CBC_SHA:
case SSL_DH_DSS_WITH_DES_CBC_SHA: // **
case SSL_DH_RSA_WITH_DES_CBC_SHA: // **
case SSL_DHE_DSS_WITH_DES_CBC_SHA:
case SSL_DHE_RSA_WITH_DES_CBC_SHA:
case SSL_DH_anon_WITH_DES_CBC_SHA:
return 56;
case SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA: // **
return 80;
case SSL_RSA_WITH_3DES_EDE_CBC_SHA:
case SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA: // **
case SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA: // **
case SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA:
case SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA:
case SSL_DH_anon_WITH_3DES_EDE_CBC_SHA:
return 112;
case SSL_RSA_WITH_RC4_128_MD5:
case SSL_RSA_WITH_RC4_128_SHA:
case SSL_RSA_WITH_IDEA_CBC_SHA: // **
case SSL_DH_anon_WITH_RC4_128_MD5:
return 128;
// TLS AES options (see RFC 3268)
case TLS_RSA_WITH_AES_128_CBC_SHA:
case TLS_DH_DSS_WITH_AES_128_CBC_SHA: // **
case TLS_DH_RSA_WITH_AES_128_CBC_SHA: // **
case TLS_DHE_DSS_WITH_AES_128_CBC_SHA:
case TLS_DHE_RSA_WITH_AES_128_CBC_SHA:
case TLS_DH_anon_WITH_AES_128_CBC_SHA:
return 128;
case TLS_RSA_WITH_AES_256_CBC_SHA:
case TLS_DH_DSS_WITH_AES_256_CBC_SHA: // **
case TLS_DH_RSA_WITH_AES_256_CBC_SHA: // **
case TLS_DHE_DSS_WITH_AES_256_CBC_SHA:
case TLS_DHE_RSA_WITH_AES_256_CBC_SHA:
case TLS_DH_anon_WITH_AES_256_CBC_SHA:
return 256;
default:
return -1;
}
}
} // namespace
//-----------------------------------------------------------------------------
SSLClientSocketMac::SSLClientSocketMac(ClientSocket* transport_socket,
const std::string& hostname,
const SSLConfig& ssl_config)
: io_callback_(this, &SSLClientSocketMac::OnIOComplete),
write_callback_(this, &SSLClientSocketMac::OnWriteComplete),
transport_(transport_socket),
hostname_(hostname),
ssl_config_(ssl_config),
user_callback_(NULL),
next_state_(STATE_NONE),
next_io_state_(STATE_NONE),
server_cert_status_(0),
completed_handshake_(false),
ssl_context_(NULL),
pending_send_error_(OK),
recv_buffer_head_slop_(0),
recv_buffer_tail_slop_(0) {
}
SSLClientSocketMac::~SSLClientSocketMac() {
Disconnect();
}
int SSLClientSocketMac::Connect(CompletionCallback* callback) {
DCHECK(transport_.get());
DCHECK(next_state_ == STATE_NONE);
DCHECK(!user_callback_);
OSStatus status = noErr;
status = SSLNewContext(false, &ssl_context_);
if (status)
return NetErrorFromOSStatus(status);
status = SSLSetProtocolVersionEnabled(ssl_context_,
kSSLProtocol2,
ssl_config_.ssl2_enabled);
if (status)
return NetErrorFromOSStatus(status);
status = SSLSetProtocolVersionEnabled(ssl_context_,
kSSLProtocol3,
ssl_config_.ssl3_enabled);
if (status)
return NetErrorFromOSStatus(status);
status = SSLSetProtocolVersionEnabled(ssl_context_,
kTLSProtocol1,
ssl_config_.tls1_enabled);
if (status)
return NetErrorFromOSStatus(status);
status = SSLSetIOFuncs(ssl_context_, SSLReadCallback, SSLWriteCallback);
if (status)
return NetErrorFromOSStatus(status);
status = SSLSetConnection(ssl_context_, this);
if (status)
return NetErrorFromOSStatus(status);
status = SSLSetPeerDomainName(ssl_context_, hostname_.c_str(),
hostname_.length());
if (status)
return NetErrorFromOSStatus(status);
next_state_ = STATE_HANDSHAKE;
int rv = DoLoop(OK);
if (rv == ERR_IO_PENDING)
user_callback_ = callback;
return rv;
}
void SSLClientSocketMac::Disconnect() {
completed_handshake_ = false;
if (ssl_context_) {
SSLClose(ssl_context_);
SSLDisposeContext(ssl_context_);
ssl_context_ = NULL;
}
transport_->Disconnect();
}
bool SSLClientSocketMac::IsConnected() const {
// Ideally, we should also check if we have received the close_notify alert
// message from the server, and return false in that case. We're not doing
// that, so this function may return a false positive. Since the upper
// layer (HttpNetworkTransaction) needs to handle a persistent connection
// closed by the server when we send a request anyway, a false positive in
// exchange for simpler code is a good trade-off.
return completed_handshake_ && transport_->IsConnected();
}
bool SSLClientSocketMac::IsConnectedAndIdle() const {
// Unlike IsConnected, this method doesn't return a false positive.
//
// Strictly speaking, we should check if we have received the close_notify
// alert message from the server, and return false in that case. Although
// the close_notify alert message means EOF in the SSL layer, it is just
// bytes to the transport layer below, so transport_->IsConnectedAndIdle()
// returns the desired false when we receive close_notify.
return completed_handshake_ && transport_->IsConnectedAndIdle();
}
int SSLClientSocketMac::Read(IOBuffer* buf, int buf_len,
CompletionCallback* callback) {
DCHECK(completed_handshake_);
DCHECK(next_state_ == STATE_NONE);
DCHECK(!user_callback_);
DCHECK(!user_buf_);
user_buf_ = buf;
user_buf_len_ = buf_len;
next_state_ = STATE_PAYLOAD_READ;
int rv = DoLoop(OK);
if (rv == ERR_IO_PENDING) {
user_callback_ = callback;
} else {
user_buf_ = NULL;
}
return rv;
}
int SSLClientSocketMac::Write(IOBuffer* buf, int buf_len,
CompletionCallback* callback) {
DCHECK(completed_handshake_);
DCHECK(next_state_ == STATE_NONE);
DCHECK(!user_callback_);
DCHECK(!user_buf_);
user_buf_ = buf;
user_buf_len_ = buf_len;
next_state_ = STATE_PAYLOAD_WRITE;
int rv = DoLoop(OK);
if (rv == ERR_IO_PENDING) {
user_callback_ = callback;
} else {
user_buf_ = NULL;
}
return rv;
}
void SSLClientSocketMac::GetSSLInfo(SSLInfo* ssl_info) {
ssl_info->Reset();
// set cert
CFArrayRef certs;
OSStatus status = SSLCopyPeerCertificates(ssl_context_, &certs);
if (!status) {
DCHECK(CFArrayGetCount(certs) > 0);
SecCertificateRef client_cert =
static_cast<SecCertificateRef>(
const_cast<void*>(CFArrayGetValueAtIndex(certs, 0)));
CFRetain(client_cert);
ssl_info->cert = X509Certificate::CreateFromHandle(
client_cert, X509Certificate::SOURCE_FROM_NETWORK);
CFRelease(certs);
}
// update status
ssl_info->cert_status = server_cert_status_;
// security info
SSLCipherSuite suite;
status = SSLGetNegotiatedCipher(ssl_context_, &suite);
if (!status)
ssl_info->security_bits = KeySizeOfCipherSuite(suite);
}
void SSLClientSocketMac::GetSSLCertRequestInfo(
SSLCertRequestInfo* cert_request_info) {
// TODO(wtc): implement this.
}
void SSLClientSocketMac::DoCallback(int rv) {
DCHECK(rv != ERR_IO_PENDING);
DCHECK(user_callback_);
// since Run may result in Read being called, clear user_callback_ up front.
CompletionCallback* c = user_callback_;
user_callback_ = NULL;
user_buf_ = NULL;
c->Run(rv);
}
void SSLClientSocketMac::OnIOComplete(int result) {
if (next_io_state_ != STATE_NONE) {
State next_state = next_state_;
next_state_ = next_io_state_;
next_io_state_ = STATE_NONE;
result = DoLoop(result);
next_state_ = next_state;
}
if (next_state_ != STATE_NONE) {
int rv = DoLoop(result);
if (rv != ERR_IO_PENDING)
DoCallback(rv);
}
}
// This is the main loop driving the state machine. Most calls coming from the
// outside just set up a few variables and jump into here.
int SSLClientSocketMac::DoLoop(int last_io_result) {
DCHECK(next_state_ != STATE_NONE);
int rv = last_io_result;
do {
State state = next_state_;
next_state_ = STATE_NONE;
switch (state) {
case STATE_HANDSHAKE:
// Do the SSL/TLS handshake.
rv = DoHandshake();
break;
case STATE_READ_COMPLETE:
// A read off the network is complete; do the paperwork.
rv = DoReadComplete(rv);
break;
case STATE_PAYLOAD_READ:
// Do a read of data from the network.
rv = DoPayloadRead();
break;
case STATE_PAYLOAD_WRITE:
// Do a write of data to the network.
rv = DoPayloadWrite();
break;
default:
rv = ERR_UNEXPECTED;
NOTREACHED() << "unexpected state";
break;
}
} while (rv != ERR_IO_PENDING && next_state_ != STATE_NONE);
return rv;
}
int SSLClientSocketMac::DoHandshake() {
OSStatus status = SSLHandshake(ssl_context_);
if (status == errSSLWouldBlock)
next_state_ = STATE_HANDSHAKE;
if (status == noErr)
completed_handshake_ = true;
int net_error = NetErrorFromOSStatus(status);
// At this point we have a connection. For now, we're going to use the default
// certificate verification that the system does, and accept its answer for
// the cert status. In the future, we'll need to call SSLSetEnableCertVerify
// to disable cert verification and do the verification ourselves. This allows
// very fine-grained control over what we'll accept for certification.
// TODO(avi): ditto
// TODO(wtc): for now, always check revocation.
server_cert_status_ = CERT_STATUS_REV_CHECKING_ENABLED;
if (net_error)
server_cert_status_ |= MapNetErrorToCertStatus(net_error);
return net_error;
}
int SSLClientSocketMac::DoReadComplete(int result) {
if (result < 0) {
read_io_buf_ = NULL;
return result;
}
char* buffer = &recv_buffer_[recv_buffer_.size() - recv_buffer_tail_slop_];
memcpy(buffer, read_io_buf_->data(), result);
read_io_buf_ = NULL;
recv_buffer_tail_slop_ -= result;
return result;
}
void SSLClientSocketMac::OnWriteComplete(int result) {
if (result < 0) {
pending_send_error_ = result;
return;
}
send_buffer_.erase(send_buffer_.begin(),
send_buffer_.begin() + result);
if (!send_buffer_.empty())
SSLWriteCallback(this, NULL, NULL);
}
int SSLClientSocketMac::DoPayloadRead() {
size_t processed;
OSStatus status = SSLRead(ssl_context_,
user_buf_->data(),
user_buf_len_,
&processed);
// There's a subtle difference here in semantics of the "would block" errors.
// In our code, ERR_IO_PENDING means the whole operation is async, while
// errSSLWouldBlock means that the stream isn't ending (and is often returned
// along with partial data). So even though "would block" is returned, if we
// have data, let's just return it.
if (processed > 0) {
next_state_ = STATE_NONE;
return processed;
}
if (status == errSSLWouldBlock) {
next_state_ = STATE_PAYLOAD_READ;
}
return NetErrorFromOSStatus(status);
}
int SSLClientSocketMac::DoPayloadWrite() {
size_t processed;
OSStatus status = SSLWrite(ssl_context_,
user_buf_->data(),
user_buf_len_,
&processed);
if (processed > 0)
return processed;
return NetErrorFromOSStatus(status);
}
// Handling the reading from the network is one of those things that should be
// simpler than it is. Ideally, we'd have some kind of ring buffer. For now, a
// std::vector<char> will have to do.
//
// The need for a buffer at all comes from the difference between an
// asynchronous connection (which is what we have) and a non-blocking connection
// (which is what we fake for Secure Transport). When Secure Transport calls us
// to read data, we call our underlying transport, which will likely tell us
// that it'll do a callback. When that happens, we need to tell Secure Transport
// that we've "blocked". When the callback happens, we have a chunk of data that
// we need to feed to Secure Transport, but it's not interested. It'll ask for
// it again when we call it again, so we need to hold on to the data.
//
// Why keep our own buffer? Well, when we execute a read and the underlying
// transport says that it'll do a callback, it keeps the pointer to the
// buffer. We can't pass it the buffer that Secure Transport gave us to fill, as
// we can't guarantee its lifetime.
//
// The basic idea, then, is this: we have a buffer filled with the data that
// we've read from the network but haven't given to Secure Transport
// yet. Whenever we read from the network the first thing we do is ensure we
// have enough room in the buffer for the read. We enlarge the buffer to be big
// enough to hold both our existing data and the new data, and then we mark the
// extra space at the end as "tail slop." Slop is just space at the ends of the
// buffer that's going to be used for data but isn't (yet). A diagram:
//
// +--------------------------------------+--------------------------------+
// | existing good data ~~~~~~~~~~~~~~~~~ | tail slop area ~~~~~~~~~~~~~~~ |
// +--------------------------------------+--------------------------------+
//
// When executing a read, we pass a pointer to the beginning of the tail slop
// area (guaranteed to be contiguous space because it's a vector, unlike, say, a
// deque (sigh)) and the size of the tail slop. When we get data (either here in
// SSLReadCallback() or above in DoReadComplete()) we subtract the number of
// bytes received from the tail slop value. That moves those bytes
// (conceptually, not physically) from the tail slop area to the area containing
// real data.
//
// The idea is still pretty simple. We enlarge the tail slop, call our
// underlying network, get data, shrink the slop area to match, copy requested
// data back into our caller's buffer, and delete the data from the head of the
// vector.
//
// Except for a nasty little problem. Asynchronous I/O calls keep the buffer
// pointer.
//
// This leads to the following scenario: we have a few bytes of good data in our
// buffer. But our caller requests more than that. We oblige by enlarging the
// tail slop, and calling our underlying provider, but the provider says that
// it'll call us back later. So we shrug our shoulders, copy what we do have
// into our caller's buffer and...
//
// Wait. We can't delete the data from the head of our vector. That would
// invalidate the pointer that we just gave to our provider. So instead, in that
// case we keep track of where the good data starts by keeping a "head slop"
// value, which just notes what data we've already sent and that is useless to
// us but that we can't delete because we have I/O in flight depending on us
// leaving the buffer alone.
//
// I hear what you're saying. "We need to use a ring buffer!" You write it,
// then, and I'll use it. Here are the features it needs. First, it needs to be
// able to have contiguous segments of arbitrary length attached to it to create
// read buffers. Second, each of those segments must have a "used" length
// indicator, so if it was half-filled by a previous data read, but the next
// data read is for more than there's space left, a new segment can be created
// for the new read without leaving an internal gap.
//
// Get to it.
//
// (sigh) Who am I kidding? TODO(avi): write the aforementioned ring buffer
// static
OSStatus SSLClientSocketMac::SSLReadCallback(SSLConnectionRef connection,
void* data,
size_t* data_length) {
DCHECK(data);
DCHECK(data_length);
SSLClientSocketMac* us =
const_cast<SSLClientSocketMac*>(
static_cast<const SSLClientSocketMac*>(connection));
// If we have I/O in flight, promise we'll get back to them and use the
// existing callback to do so
if (us->next_io_state_ == STATE_READ_COMPLETE) {
*data_length = 0;
return errSSLWouldBlock;
}
// Start with what's in the buffer
size_t total_read = us->recv_buffer_.size() - us->recv_buffer_head_slop_ -
us->recv_buffer_tail_slop_;
// Resize the buffer if needed
if (us->recv_buffer_.size() - us->recv_buffer_head_slop_ < *data_length) {
us->recv_buffer_.resize(us->recv_buffer_head_slop_ + *data_length);
us->recv_buffer_tail_slop_ = *data_length - total_read;
}
int rv = 1; // any old value to spin the loop below
while (rv > 0 && total_read < *data_length) {
char* buffer = &us->recv_buffer_[us->recv_buffer_head_slop_ + total_read];
us->read_io_buf_ = new IOBuffer(*data_length - total_read);
rv = us->transport_->Read(us->read_io_buf_,
*data_length - total_read,
&us->io_callback_);
if (rv >= 0) {
memcpy(buffer, us->read_io_buf_->data(), rv);
us->read_io_buf_ = NULL;
total_read += rv;
us->recv_buffer_tail_slop_ -= rv;
}
}
*data_length = total_read;
if (total_read) {
memcpy(data, &us->recv_buffer_[us->recv_buffer_head_slop_], total_read);
if (rv == ERR_IO_PENDING) {
// We have I/O in flight which is going to land in our buffer. We can't
// shuffle things around, so we need to just fiddle with pointers.
us->recv_buffer_head_slop_ += total_read;
} else {
us->recv_buffer_.erase(us->recv_buffer_.begin(),
us->recv_buffer_.begin() +
total_read +
us->recv_buffer_head_slop_);
us->recv_buffer_head_slop_ = 0;
}
}
if (rv == ERR_IO_PENDING) {
us->next_io_state_ = STATE_READ_COMPLETE;
} else {
us->read_io_buf_ = NULL;
}
if (rv < 0)
return OSStatusFromNetError(rv);
return noErr;
}
// static
OSStatus SSLClientSocketMac::SSLWriteCallback(SSLConnectionRef connection,
const void* data,
size_t* data_length) {
SSLClientSocketMac* us =
const_cast<SSLClientSocketMac*>(
static_cast<const SSLClientSocketMac*>(connection));
if (us->pending_send_error_ != OK) {
OSStatus status = OSStatusFromNetError(us->pending_send_error_);
us->pending_send_error_ = OK;
return status;
}
if (data)
us->send_buffer_.insert(us->send_buffer_.end(),
static_cast<const char*>(data),
static_cast<const char*>(data) + *data_length);
int rv;
do {
scoped_refptr<IOBuffer> buffer = new IOBuffer(us->send_buffer_.size());
memcpy(buffer->data(), &us->send_buffer_[0], us->send_buffer_.size());
rv = us->transport_->Write(buffer,
us->send_buffer_.size(),
&us->write_callback_);
if (rv > 0) {
us->send_buffer_.erase(us->send_buffer_.begin(),
us->send_buffer_.begin() + rv);
}
} while (rv > 0 && !us->send_buffer_.empty());
if (rv < 0 && rv != ERR_IO_PENDING) {
return OSStatusFromNetError(rv);
}
// always lie to our caller
return noErr;
}
} // namespace net
|