1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/cert/x509_util_openssl.h"
#include <openssl/asn1.h>
#include <openssl/mem.h>
#include <algorithm>
#include "base/lazy_instance.h"
#include "base/logging.h"
#include "base/strings/string_piece.h"
#include "base/strings/string_util.h"
#include "crypto/ec_private_key.h"
#include "crypto/openssl_util.h"
#include "crypto/rsa_private_key.h"
#include "crypto/scoped_openssl_types.h"
#include "net/cert/x509_cert_types.h"
#include "net/cert/x509_util.h"
#include "net/ssl/scoped_openssl_types.h"
namespace net {
namespace {
using ScopedASN1_INTEGER =
crypto::ScopedOpenSSL<ASN1_INTEGER, ASN1_INTEGER_free>;
using ScopedASN1_OCTET_STRING =
crypto::ScopedOpenSSL<ASN1_OCTET_STRING, ASN1_OCTET_STRING_free>;
using ScopedASN1_STRING = crypto::ScopedOpenSSL<ASN1_STRING, ASN1_STRING_free>;
using ScopedASN1_TIME = crypto::ScopedOpenSSL<ASN1_TIME, ASN1_TIME_free>;
using ScopedX509_EXTENSION =
crypto::ScopedOpenSSL<X509_EXTENSION, X509_EXTENSION_free>;
using ScopedX509_NAME = crypto::ScopedOpenSSL<X509_NAME, X509_NAME_free>;
const EVP_MD* ToEVP(x509_util::DigestAlgorithm alg) {
switch (alg) {
case x509_util::DIGEST_SHA1:
return EVP_sha1();
case x509_util::DIGEST_SHA256:
return EVP_sha256();
}
return NULL;
}
} // namespace
namespace x509_util {
namespace {
X509* CreateCertificate(EVP_PKEY* key,
DigestAlgorithm alg,
const std::string& common_name,
uint32_t serial_number,
base::Time not_valid_before,
base::Time not_valid_after) {
// Put the serial number into an OpenSSL-friendly object.
ScopedASN1_INTEGER asn1_serial(ASN1_INTEGER_new());
if (!asn1_serial.get() ||
!ASN1_INTEGER_set(asn1_serial.get(), static_cast<long>(serial_number))) {
LOG(ERROR) << "Invalid serial number " << serial_number;
return NULL;
}
// Do the same for the time stamps.
ScopedASN1_TIME asn1_not_before_time(
ASN1_TIME_set(NULL, not_valid_before.ToTimeT()));
if (!asn1_not_before_time.get()) {
LOG(ERROR) << "Invalid not_valid_before time: "
<< not_valid_before.ToTimeT();
return NULL;
}
ScopedASN1_TIME asn1_not_after_time(
ASN1_TIME_set(NULL, not_valid_after.ToTimeT()));
if (!asn1_not_after_time.get()) {
LOG(ERROR) << "Invalid not_valid_after time: " << not_valid_after.ToTimeT();
return NULL;
}
// Because |common_name| only contains a common name and starts with 'CN=',
// there is no need for a full RFC 2253 parser here. Do some sanity checks
// though.
static const char kCommonNamePrefix[] = "CN=";
const size_t kCommonNamePrefixLen = sizeof(kCommonNamePrefix) - 1;
if (common_name.size() < kCommonNamePrefixLen ||
strncmp(common_name.c_str(), kCommonNamePrefix, kCommonNamePrefixLen)) {
LOG(ERROR) << "Common name must begin with " << kCommonNamePrefix;
return NULL;
}
if (common_name.size() > INT_MAX) {
LOG(ERROR) << "Common name too long";
return NULL;
}
unsigned char* common_name_str =
reinterpret_cast<unsigned char*>(const_cast<char*>(common_name.data())) +
kCommonNamePrefixLen;
int common_name_len =
static_cast<int>(common_name.size() - kCommonNamePrefixLen);
ScopedX509_NAME name(X509_NAME_new());
if (!name.get() || !X509_NAME_add_entry_by_NID(name.get(),
NID_commonName,
MBSTRING_ASC,
common_name_str,
common_name_len,
-1,
0)) {
LOG(ERROR) << "Can't parse common name: " << common_name.c_str();
return NULL;
}
// Now create certificate and populate it.
ScopedX509 cert(X509_new());
if (!cert.get() || !X509_set_version(cert.get(), 2L) /* i.e. version 3 */ ||
!X509_set_pubkey(cert.get(), key) ||
!X509_set_serialNumber(cert.get(), asn1_serial.get()) ||
!X509_set_notBefore(cert.get(), asn1_not_before_time.get()) ||
!X509_set_notAfter(cert.get(), asn1_not_after_time.get()) ||
!X509_set_subject_name(cert.get(), name.get()) ||
!X509_set_issuer_name(cert.get(), name.get())) {
LOG(ERROR) << "Could not create certificate";
return NULL;
}
return cert.release();
}
// DER-encodes |x509|. On success, returns true and writes the
// encoding to |*out_der|.
bool DerEncodeCert(X509* x509, std::string* out_der) {
int len = i2d_X509(x509, NULL);
if (len < 0)
return false;
uint8_t* ptr = reinterpret_cast<uint8_t*>(base::WriteInto(out_der, len + 1));
if (i2d_X509(x509, &ptr) < 0) {
NOTREACHED();
out_der->clear();
return false;
}
return true;
}
bool SignAndDerEncodeCert(X509* cert,
EVP_PKEY* key,
DigestAlgorithm alg,
std::string* der_encoded) {
// Get the message digest algorithm
const EVP_MD* md = ToEVP(alg);
if (!md) {
LOG(ERROR) << "Unrecognized hash algorithm.";
return false;
}
// Sign it with the private key.
if (!X509_sign(cert, key, md)) {
LOG(ERROR) << "Could not sign certificate with key.";
return false;
}
// Convert it into a DER-encoded string copied to |der_encoded|.
return DerEncodeCert(cert, der_encoded);
}
struct DERCache {
std::string data;
};
void DERCache_free(void* parent, void* ptr, CRYPTO_EX_DATA* ad, int idx,
long argl, void* argp) {
DERCache* der_cache = static_cast<DERCache*>(ptr);
delete der_cache;
}
class DERCacheInitSingleton {
public:
DERCacheInitSingleton() {
crypto::EnsureOpenSSLInit();
der_cache_ex_index_ = X509_get_ex_new_index(0, 0, 0, 0, DERCache_free);
DCHECK_NE(-1, der_cache_ex_index_);
}
int der_cache_ex_index() const { return der_cache_ex_index_; }
private:
int der_cache_ex_index_;
DISALLOW_COPY_AND_ASSIGN(DERCacheInitSingleton);
};
base::LazyInstance<DERCacheInitSingleton>::Leaky g_der_cache_singleton =
LAZY_INSTANCE_INITIALIZER;
} // namespace
bool IsSupportedValidityRange(base::Time not_valid_before,
base::Time not_valid_after) {
if (not_valid_before > not_valid_after)
return false;
// The validity field of a certificate can only encode years 1-9999.
// Compute the base::Time values corresponding to Jan 1st,0001 and
// Jan 1st, 10000 respectively. Done by using the pre-computed numbers
// of days between these dates and the Unix epoch, i.e. Jan 1st, 1970,
// using the following Python script:
//
// from datetime import date as D
// print (D(1970,1,1)-D(1,1,1)) # -> 719162 days
// print (D(9999,12,31)-D(1970,1,1)) # -> 2932896 days
//
// Note: This ignores leap seconds, but should be enough in practice.
//
const int64_t kDaysFromYear0001ToUnixEpoch = 719162;
const int64_t kDaysFromUnixEpochToYear10000 = 2932896 + 1;
const base::Time kEpoch = base::Time::UnixEpoch();
const base::Time kYear0001 = kEpoch -
base::TimeDelta::FromDays(kDaysFromYear0001ToUnixEpoch);
const base::Time kYear10000 = kEpoch +
base::TimeDelta::FromDays(kDaysFromUnixEpochToYear10000);
if (not_valid_before < kYear0001 || not_valid_before >= kYear10000 ||
not_valid_after < kYear0001 || not_valid_after >= kYear10000)
return false;
return true;
}
bool CreateSelfSignedCert(crypto::RSAPrivateKey* key,
DigestAlgorithm alg,
const std::string& common_name,
uint32_t serial_number,
base::Time not_valid_before,
base::Time not_valid_after,
std::string* der_encoded) {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
ScopedX509 cert(CreateCertificate(key->key(),
alg,
common_name,
serial_number,
not_valid_before,
not_valid_after));
if (!cert.get())
return false;
return SignAndDerEncodeCert(cert.get(), key->key(), alg, der_encoded);
}
bool ParsePrincipalKeyAndValue(X509_NAME_ENTRY* entry,
std::string* key,
std::string* value) {
if (key) {
ASN1_OBJECT* object = X509_NAME_ENTRY_get_object(entry);
key->assign(OBJ_nid2sn(OBJ_obj2nid(object)));
}
ASN1_STRING* data = X509_NAME_ENTRY_get_data(entry);
if (!data)
return false;
unsigned char* buf = NULL;
int len = ASN1_STRING_to_UTF8(&buf, data);
if (len <= 0)
return false;
value->assign(reinterpret_cast<const char*>(buf), len);
OPENSSL_free(buf);
return true;
}
bool ParsePrincipalKeyAndValueByIndex(X509_NAME* name,
int index,
std::string* key,
std::string* value) {
X509_NAME_ENTRY* entry = X509_NAME_get_entry(name, index);
if (!entry)
return false;
return ParsePrincipalKeyAndValue(entry, key, value);
}
bool ParsePrincipalValueByIndex(X509_NAME* name,
int index,
std::string* value) {
return ParsePrincipalKeyAndValueByIndex(name, index, NULL, value);
}
bool ParsePrincipalValueByNID(X509_NAME* name, int nid, std::string* value) {
int index = X509_NAME_get_index_by_NID(name, nid, -1);
if (index < 0)
return false;
return ParsePrincipalValueByIndex(name, index, value);
}
bool ParseDate(ASN1_TIME* x509_time, base::Time* time) {
if (!x509_time ||
(x509_time->type != V_ASN1_UTCTIME &&
x509_time->type != V_ASN1_GENERALIZEDTIME))
return false;
base::StringPiece str_date(reinterpret_cast<const char*>(x509_time->data),
x509_time->length);
CertDateFormat format = x509_time->type == V_ASN1_UTCTIME ?
CERT_DATE_FORMAT_UTC_TIME : CERT_DATE_FORMAT_GENERALIZED_TIME;
return ParseCertificateDate(str_date, format, time);
}
// Returns true if |der_cache| points to valid data, false otherwise.
// (note: the DER-encoded data in |der_cache| is owned by |cert|, callers should
// not free it).
bool GetDER(X509* x509, base::StringPiece* der_cache) {
int x509_der_cache_index =
g_der_cache_singleton.Get().der_cache_ex_index();
// Re-encoding the DER data via i2d_X509 is an expensive operation,
// but it's necessary for comparing two certificates. Re-encode at
// most once per certificate and cache the data within the X509 cert
// using X509_set_ex_data.
DERCache* internal_cache = static_cast<DERCache*>(
X509_get_ex_data(x509, x509_der_cache_index));
if (!internal_cache) {
scoped_ptr<DERCache> new_cache(new DERCache);
if (!DerEncodeCert(x509, &new_cache->data))
return false;
internal_cache = new_cache.get();
X509_set_ex_data(x509, x509_der_cache_index, new_cache.release());
}
*der_cache = base::StringPiece(internal_cache->data);
return true;
}
} // namespace x509_util
} // namespace net
|