summaryrefslogtreecommitdiffstats
path: root/net/disk_cache/mem_backend_impl.cc
blob: 1122bca012d18142419913f1b79671926dc163df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
// Copyright (c) 2006-2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/disk_cache/mem_backend_impl.h"

#include "base/logging.h"
#include "base/sys_info.h"
#include "net/base/net_errors.h"
#include "net/disk_cache/cache_util.h"
#include "net/disk_cache/mem_entry_impl.h"

using base::Time;

namespace {

const int kDefaultCacheSize = 10 * 1024 * 1024;
const int kCleanUpMargin = 1024 * 1024;

int LowWaterAdjust(int high_water) {
  if (high_water < kCleanUpMargin)
    return 0;

  return high_water - kCleanUpMargin;
}

}  // namespace

namespace disk_cache {

MemBackendImpl::MemBackendImpl() : max_size_(0), current_size_(0) {}

MemBackendImpl::~MemBackendImpl() {
  EntryMap::iterator it = entries_.begin();
  while (it != entries_.end()) {
    it->second->Doom();
    it = entries_.begin();
  }
  DCHECK(!current_size_);
}

// Static.
Backend* MemBackendImpl::CreateBackend(int max_bytes) {
  MemBackendImpl* cache = new MemBackendImpl();
  cache->SetMaxSize(max_bytes);
  if (cache->Init())
    return cache;

  delete cache;
  LOG(ERROR) << "Unable to create cache";
  return NULL;
}

bool MemBackendImpl::Init() {
  if (max_size_)
    return true;

  int64 total_memory = base::SysInfo::AmountOfPhysicalMemory();

  if (total_memory <= 0) {
    max_size_ = kDefaultCacheSize;
    return true;
  }

  // We want to use up to 2% of the computer's memory, with a limit of 50 MB,
  // reached on systemd with more than 2.5 GB of RAM.
  total_memory = total_memory * 2 / 100;
  if (total_memory > kDefaultCacheSize * 5)
    max_size_ = kDefaultCacheSize * 5;
  else
    max_size_ = static_cast<int32>(total_memory);

  return true;
}

bool MemBackendImpl::SetMaxSize(int max_bytes) {
  COMPILE_ASSERT(sizeof(max_bytes) == sizeof(max_size_), unsupported_int_model);
  if (max_bytes < 0)
    return false;

  // Zero size means use the default.
  if (!max_bytes)
    return true;

  max_size_ = max_bytes;
  return true;
}

void MemBackendImpl::InternalDoomEntry(MemEntryImpl* entry) {
  // Only parent entries can be passed into this method.
  DCHECK(entry->type() == MemEntryImpl::kParentEntry);

  rankings_.Remove(entry);
  EntryMap::iterator it = entries_.find(entry->GetKey());
  if (it != entries_.end())
    entries_.erase(it);
  else
    NOTREACHED();

  entry->InternalDoom();
}

void MemBackendImpl::UpdateRank(MemEntryImpl* node) {
  rankings_.UpdateRank(node);
}

void MemBackendImpl::ModifyStorageSize(int32 old_size, int32 new_size) {
  if (old_size >= new_size)
    SubstractStorageSize(old_size - new_size);
  else
    AddStorageSize(new_size - old_size);
}

int MemBackendImpl::MaxFileSize() const {
  return max_size_ / 8;
}

void MemBackendImpl::InsertIntoRankingList(MemEntryImpl* entry) {
  rankings_.Insert(entry);
}

void MemBackendImpl::RemoveFromRankingList(MemEntryImpl* entry) {
  rankings_.Remove(entry);
}

int32 MemBackendImpl::GetEntryCount() const {
  return static_cast<int32>(entries_.size());
}

int MemBackendImpl::OpenEntry(const std::string& key, Entry** entry,
                              CompletionCallback* callback) {
  if (OpenEntry(key, entry))
    return net::OK;

  return net::ERR_FAILED;
}

int MemBackendImpl::CreateEntry(const std::string& key, Entry** entry,
                                CompletionCallback* callback) {
  if (CreateEntry(key, entry))
    return net::OK;

  return net::ERR_FAILED;
}

int MemBackendImpl::DoomEntry(const std::string& key,
                              CompletionCallback* callback) {
  if (DoomEntry(key))
    return net::OK;

  return net::ERR_FAILED;
}

int MemBackendImpl::DoomAllEntries(CompletionCallback* callback) {
  if (DoomAllEntries())
    return net::OK;

  return net::ERR_FAILED;
}

int MemBackendImpl::DoomEntriesBetween(const base::Time initial_time,
                                       const base::Time end_time,
                                       CompletionCallback* callback) {
  if (DoomEntriesBetween(initial_time, end_time))
    return net::OK;

  return net::ERR_FAILED;
}

int MemBackendImpl::DoomEntriesSince(const base::Time initial_time,
                                     CompletionCallback* callback) {
  if (DoomEntriesSince(initial_time))
    return net::OK;

  return net::ERR_FAILED;
}

int MemBackendImpl::OpenNextEntry(void** iter, Entry** next_entry,
                                  CompletionCallback* callback) {
  if (OpenNextEntry(iter, next_entry))
    return net::OK;

  return net::ERR_FAILED;
}

void MemBackendImpl::EndEnumeration(void** iter) {
  *iter = NULL;
}

bool MemBackendImpl::OpenEntry(const std::string& key, Entry** entry) {
  EntryMap::iterator it = entries_.find(key);
  if (it == entries_.end())
    return false;

  it->second->Open();

  *entry = it->second;
  return true;
}

bool MemBackendImpl::CreateEntry(const std::string& key, Entry** entry) {
  EntryMap::iterator it = entries_.find(key);
  if (it != entries_.end())
    return false;

  MemEntryImpl* cache_entry = new MemEntryImpl(this);
  if (!cache_entry->CreateEntry(key)) {
    delete entry;
    return false;
  }

  rankings_.Insert(cache_entry);
  entries_[key] = cache_entry;

  *entry = cache_entry;
  return true;
}

bool MemBackendImpl::DoomEntry(const std::string& key) {
  Entry* entry;
  if (!OpenEntry(key, &entry))
    return false;

  entry->Doom();
  entry->Close();
  return true;
}

bool MemBackendImpl::DoomAllEntries() {
  TrimCache(true);
  return true;
}

bool MemBackendImpl::DoomEntriesBetween(const Time initial_time,
                                        const Time end_time) {
  if (end_time.is_null())
    return DoomEntriesSince(initial_time);

  DCHECK(end_time >= initial_time);

  MemEntryImpl* next = rankings_.GetNext(NULL);

  // rankings_ is ordered by last used, this will descend through the cache
  // and start dooming items before the end_time, and will stop once it reaches
  // an item used before the initial time.
  while (next) {
    MemEntryImpl* node = next;
    next = rankings_.GetNext(next);

    if (node->GetLastUsed() < initial_time)
      break;

    if (node->GetLastUsed() < end_time)
      node->Doom();
  }

  return true;
}

bool MemBackendImpl::DoomEntriesSince(const Time initial_time) {
  for (;;) {
    // Get the entry in the front.
    Entry* entry = rankings_.GetNext(NULL);

    // Break the loop when there are no more entries or the entry is too old.
    if (!entry || entry->GetLastUsed() < initial_time)
      return true;
    entry->Doom();
  }
}

bool MemBackendImpl::OpenNextEntry(void** iter, Entry** next_entry) {
  MemEntryImpl* current = reinterpret_cast<MemEntryImpl*>(*iter);
  MemEntryImpl* node = rankings_.GetNext(current);
  // We should never return a child entry so iterate until we hit a parent
  // entry.
  while (node && node->type() != MemEntryImpl::kParentEntry) {
    node = rankings_.GetNext(node);
  }
  *next_entry = node;
  *iter = node;

  if (node)
    node->Open();

  return NULL != node;
}

void MemBackendImpl::TrimCache(bool empty) {
  MemEntryImpl* next = rankings_.GetPrev(NULL);

  DCHECK(next);

  int target_size = empty ? 0 : LowWaterAdjust(max_size_);
  while (current_size_ > target_size && next) {
    MemEntryImpl* node = next;
    next = rankings_.GetPrev(next);
    if (!node->InUse() || empty) {
      node->Doom();
    }
  }

  return;
}

void MemBackendImpl::AddStorageSize(int32 bytes) {
  current_size_ += bytes;
  DCHECK(current_size_ >= 0);

  if (current_size_ > max_size_)
    TrimCache(false);
}

void MemBackendImpl::SubstractStorageSize(int32 bytes) {
  current_size_ -= bytes;
  DCHECK(current_size_ >= 0);
}

}  // namespace disk_cache