1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef NET_DISK_CACHE_MEM_ENTRY_IMPL_H_
#define NET_DISK_CACHE_MEM_ENTRY_IMPL_H_
#include "base/containers/hash_tables.h"
#include "base/gtest_prod_util.h"
#include "base/memory/scoped_ptr.h"
#include "net/base/net_log.h"
#include "net/disk_cache/disk_cache.h"
namespace disk_cache {
class MemBackendImpl;
// This class implements the Entry interface for the memory-only cache. An
// object of this class represents a single entry on the cache. We use two
// types of entries, parent and child to support sparse caching.
//
// A parent entry is non-sparse until a sparse method is invoked (i.e.
// ReadSparseData, WriteSparseData, GetAvailableRange) when sparse information
// is initialized. It then manages a list of child entries and delegates the
// sparse API calls to the child entries. It creates and deletes child entries
// and updates the list when needed.
//
// A child entry is used to carry partial cache content, non-sparse methods like
// ReadData and WriteData cannot be applied to them. The lifetime of a child
// entry is managed by the parent entry that created it except that the entry
// can be evicted independently. A child entry does not have a key and it is not
// registered in the backend's entry map. It is registered in the backend's
// ranking list to enable eviction of a partial content.
//
// A sparse entry has a fixed maximum size and can be partially filled. There
// can only be one continous filled region in a sparse entry, as illustrated by
// the following example:
// | xxx ooooo |
// x = unfilled region
// o = filled region
// It is guranteed that there is at most one unfilled region and one filled
// region, and the unfilled region (if there is one) is always before the filled
// region. The book keeping for filled region in a sparse entry is done by using
// the variable |child_first_pos_| (inclusive).
class MemEntryImpl : public Entry {
public:
enum EntryType {
kParentEntry,
kChildEntry,
};
explicit MemEntryImpl(MemBackendImpl* backend);
// Performs the initialization of a EntryImpl that will be added to the
// cache.
bool CreateEntry(const std::string& key, net::NetLog* net_log);
// Permanently destroys this entry.
void InternalDoom();
void Open();
bool InUse();
MemEntryImpl* next() const {
return next_;
}
MemEntryImpl* prev() const {
return prev_;
}
void set_next(MemEntryImpl* next) {
next_ = next;
}
void set_prev(MemEntryImpl* prev) {
prev_ = prev;
}
EntryType type() const {
return parent_ ? kChildEntry : kParentEntry;
}
const net::BoundNetLog& net_log() {
return net_log_;
}
// Entry interface.
virtual void Doom() OVERRIDE;
virtual void Close() OVERRIDE;
virtual std::string GetKey() const OVERRIDE;
virtual base::Time GetLastUsed() const OVERRIDE;
virtual base::Time GetLastModified() const OVERRIDE;
virtual int32 GetDataSize(int index) const OVERRIDE;
virtual int ReadData(int index, int offset, IOBuffer* buf, int buf_len,
const CompletionCallback& callback) OVERRIDE;
virtual int WriteData(int index, int offset, IOBuffer* buf, int buf_len,
const CompletionCallback& callback,
bool truncate) OVERRIDE;
virtual int ReadSparseData(int64 offset, IOBuffer* buf, int buf_len,
const CompletionCallback& callback) OVERRIDE;
virtual int WriteSparseData(int64 offset, IOBuffer* buf, int buf_len,
const CompletionCallback& callback) OVERRIDE;
virtual int GetAvailableRange(int64 offset, int len, int64* start,
const CompletionCallback& callback) OVERRIDE;
virtual bool CouldBeSparse() const OVERRIDE;
virtual void CancelSparseIO() OVERRIDE {}
virtual int ReadyForSparseIO(const CompletionCallback& callback) OVERRIDE;
private:
typedef base::hash_map<int, MemEntryImpl*> EntryMap;
enum {
NUM_STREAMS = 3
};
virtual ~MemEntryImpl();
// Do all the work for corresponding public functions. Implemented as
// separate functions to make logging of results simpler.
int InternalReadData(int index, int offset, IOBuffer* buf, int buf_len);
int InternalWriteData(int index, int offset, IOBuffer* buf, int buf_len,
bool truncate);
int InternalReadSparseData(int64 offset, IOBuffer* buf, int buf_len);
int InternalWriteSparseData(int64 offset, IOBuffer* buf, int buf_len);
// Old Entry interface.
int GetAvailableRange(int64 offset, int len, int64* start);
// Grows and cleans up the data buffer.
void PrepareTarget(int index, int offset, int buf_len);
// Updates ranking information.
void UpdateRank(bool modified);
// Initializes the children map and sparse info. This method is only called
// on a parent entry.
bool InitSparseInfo();
// Performs the initialization of a MemEntryImpl as a child entry.
// |parent| is the pointer to the parent entry. |child_id| is the ID of
// the new child.
bool InitChildEntry(MemEntryImpl* parent, int child_id, net::NetLog* net_log);
// Returns an entry responsible for |offset|. The returned entry can be a
// child entry or this entry itself if |offset| points to the first range.
// If such entry does not exist and |create| is true, a new child entry is
// created.
MemEntryImpl* OpenChild(int64 offset, bool create);
// Finds the first child located within the range [|offset|, |offset + len|).
// Returns the number of bytes ahead of |offset| to reach the first available
// bytes in the entry. The first child found is output to |child|.
int FindNextChild(int64 offset, int len, MemEntryImpl** child);
// Removes child indexed by |child_id| from the children map.
void DetachChild(int child_id);
std::string key_;
std::vector<char> data_[NUM_STREAMS]; // User data.
int32 data_size_[NUM_STREAMS];
int ref_count_;
int child_id_; // The ID of a child entry.
int child_first_pos_; // The position of the first byte in a child
// entry.
MemEntryImpl* next_; // Pointers for the LRU list.
MemEntryImpl* prev_;
MemEntryImpl* parent_; // Pointer to the parent entry.
scoped_ptr<EntryMap> children_;
base::Time last_modified_; // LRU information.
base::Time last_used_;
MemBackendImpl* backend_; // Back pointer to the cache.
bool doomed_; // True if this entry was removed from the cache.
net::BoundNetLog net_log_;
DISALLOW_COPY_AND_ASSIGN(MemEntryImpl);
};
} // namespace disk_cache
#endif // NET_DISK_CACHE_MEM_ENTRY_IMPL_H_
|