1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
|
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/disk_cache/simple/simple_entry_impl.h"
#include <algorithm>
#include <cstring>
#include <vector>
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/callback.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/message_loop/message_loop_proxy.h"
#include "base/metrics/histogram.h"
#include "base/task_runner.h"
#include "base/time/time.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/disk_cache/simple/simple_backend_impl.h"
#include "net/disk_cache/simple/simple_index.h"
#include "net/disk_cache/simple/simple_synchronous_entry.h"
#include "net/disk_cache/simple/simple_util.h"
#include "third_party/zlib/zlib.h"
namespace {
// Used in histograms, please only add entries at the end.
enum ReadResult {
READ_RESULT_SUCCESS = 0,
READ_RESULT_INVALID_ARGUMENT = 1,
READ_RESULT_NONBLOCK_EMPTY_RETURN = 2,
READ_RESULT_BAD_STATE = 3,
READ_RESULT_FAST_EMPTY_RETURN = 4,
READ_RESULT_SYNC_READ_FAILURE = 5,
READ_RESULT_SYNC_CHECKSUM_FAILURE = 6,
READ_RESULT_MAX = 7,
};
// Used in histograms, please only add entries at the end.
enum WriteResult {
WRITE_RESULT_SUCCESS = 0,
WRITE_RESULT_INVALID_ARGUMENT = 1,
WRITE_RESULT_OVER_MAX_SIZE = 2,
WRITE_RESULT_BAD_STATE = 3,
WRITE_RESULT_SYNC_WRITE_FAILURE = 4,
WRITE_RESULT_MAX = 5,
};
void RecordReadResult(ReadResult result) {
UMA_HISTOGRAM_ENUMERATION("SimpleCache.ReadResult", result, READ_RESULT_MAX);
};
void RecordWriteResult(WriteResult result) {
UMA_HISTOGRAM_ENUMERATION("SimpleCache.WriteResult",
result, WRITE_RESULT_MAX);
};
// Short trampoline to take an owned input parameter and call a net completion
// callback with its value.
void CallCompletionCallback(const net::CompletionCallback& callback,
scoped_ptr<int> result) {
DCHECK(result);
if (!callback.is_null())
callback.Run(*result);
}
} // namespace
namespace disk_cache {
using base::Closure;
using base::FilePath;
using base::MessageLoopProxy;
using base::Time;
using base::TaskRunner;
// A helper class to insure that RunNextOperationIfNeeded() is called when
// exiting the current stack frame.
class SimpleEntryImpl::ScopedOperationRunner {
public:
explicit ScopedOperationRunner(SimpleEntryImpl* entry) : entry_(entry) {
}
~ScopedOperationRunner() {
entry_->RunNextOperationIfNeeded();
}
private:
SimpleEntryImpl* const entry_;
};
SimpleEntryImpl::SimpleEntryImpl(SimpleBackendImpl* backend,
const FilePath& path,
const uint64 entry_hash)
: backend_(backend->AsWeakPtr()),
worker_pool_(backend->worker_pool()),
path_(path),
entry_hash_(entry_hash),
last_used_(Time::Now()),
last_modified_(last_used_),
open_count_(0),
state_(STATE_UNINITIALIZED),
synchronous_entry_(NULL) {
COMPILE_ASSERT(arraysize(data_size_) == arraysize(crc32s_end_offset_),
arrays_should_be_same_size);
COMPILE_ASSERT(arraysize(data_size_) == arraysize(crc32s_),
arrays_should_be_same_size);
COMPILE_ASSERT(arraysize(data_size_) == arraysize(have_written_),
arrays_should_be_same_size);
COMPILE_ASSERT(arraysize(data_size_) == arraysize(crc_check_state_),
arrays_should_be_same_size);
MakeUninitialized();
}
int SimpleEntryImpl::OpenEntry(Entry** out_entry,
const CompletionCallback& callback) {
DCHECK(backend_.get());
// This enumeration is used in histograms, add entries only at end.
enum OpenEntryIndexEnum {
INDEX_NOEXIST = 0,
INDEX_MISS = 1,
INDEX_HIT = 2,
INDEX_MAX = 3,
};
OpenEntryIndexEnum open_entry_index_enum = INDEX_NOEXIST;
if (backend_.get()) {
if (backend_->index()->Has(entry_hash_))
open_entry_index_enum = INDEX_HIT;
else
open_entry_index_enum = INDEX_MISS;
}
UMA_HISTOGRAM_ENUMERATION("SimpleCache.OpenEntryIndexState",
open_entry_index_enum, INDEX_MAX);
// If entry is not known to the index, initiate fast failover to the network.
if (open_entry_index_enum == INDEX_MISS)
return net::ERR_FAILED;
pending_operations_.push(base::Bind(&SimpleEntryImpl::OpenEntryInternal,
this, callback, out_entry));
RunNextOperationIfNeeded();
return net::ERR_IO_PENDING;
}
int SimpleEntryImpl::CreateEntry(Entry** out_entry,
const CompletionCallback& callback) {
DCHECK(backend_.get());
DCHECK_EQ(entry_hash_, simple_util::GetEntryHashKey(key_));
int ret_value = net::ERR_FAILED;
if (state_ == STATE_UNINITIALIZED &&
pending_operations_.size() == 0) {
ReturnEntryToCaller(out_entry);
// We can do optimistic Create.
pending_operations_.push(base::Bind(&SimpleEntryImpl::CreateEntryInternal,
this,
CompletionCallback(),
static_cast<Entry**>(NULL)));
ret_value = net::OK;
} else {
pending_operations_.push(base::Bind(&SimpleEntryImpl::CreateEntryInternal,
this,
callback,
out_entry));
ret_value = net::ERR_IO_PENDING;
}
// We insert the entry in the index before creating the entry files in the
// SimpleSynchronousEntry, because this way the worst scenario is when we
// have the entry in the index but we don't have the created files yet, this
// way we never leak files. CreationOperationComplete will remove the entry
// from the index if the creation fails.
if (backend_.get())
backend_->index()->Insert(key_);
RunNextOperationIfNeeded();
return ret_value;
}
int SimpleEntryImpl::DoomEntry(const CompletionCallback& callback) {
MarkAsDoomed();
scoped_ptr<int> result(new int());
Closure task = base::Bind(&SimpleSynchronousEntry::DoomEntry, path_, key_,
entry_hash_, result.get());
Closure reply = base::Bind(&CallCompletionCallback,
callback, base::Passed(&result));
worker_pool_->PostTaskAndReply(FROM_HERE, task, reply);
return net::ERR_IO_PENDING;
}
void SimpleEntryImpl::Doom() {
DoomEntry(CompletionCallback());
}
void SimpleEntryImpl::Close() {
DCHECK(io_thread_checker_.CalledOnValidThread());
DCHECK_LT(0, open_count_);
if (--open_count_ > 0) {
DCHECK(!HasOneRef());
Release(); // Balanced in ReturnEntryToCaller().
return;
}
pending_operations_.push(base::Bind(&SimpleEntryImpl::CloseInternal, this));
DCHECK(!HasOneRef());
Release(); // Balanced in ReturnEntryToCaller().
RunNextOperationIfNeeded();
}
std::string SimpleEntryImpl::GetKey() const {
DCHECK(io_thread_checker_.CalledOnValidThread());
return key_;
}
Time SimpleEntryImpl::GetLastUsed() const {
DCHECK(io_thread_checker_.CalledOnValidThread());
return last_used_;
}
Time SimpleEntryImpl::GetLastModified() const {
DCHECK(io_thread_checker_.CalledOnValidThread());
return last_modified_;
}
int32 SimpleEntryImpl::GetDataSize(int stream_index) const {
DCHECK(io_thread_checker_.CalledOnValidThread());
DCHECK_LE(0, data_size_[stream_index]);
return data_size_[stream_index];
}
int SimpleEntryImpl::ReadData(int stream_index,
int offset,
net::IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) {
DCHECK(io_thread_checker_.CalledOnValidThread());
if (stream_index < 0 || stream_index >= kSimpleEntryFileCount ||
buf_len < 0) {
RecordReadResult(READ_RESULT_INVALID_ARGUMENT);
return net::ERR_INVALID_ARGUMENT;
}
if (pending_operations_.empty() && (offset >= GetDataSize(stream_index) ||
offset < 0 || !buf_len)) {
RecordReadResult(READ_RESULT_NONBLOCK_EMPTY_RETURN);
return 0;
}
// TODO(felipeg): Optimization: Add support for truly parallel read
// operations.
pending_operations_.push(
base::Bind(&SimpleEntryImpl::ReadDataInternal,
this,
stream_index,
offset,
make_scoped_refptr(buf),
buf_len,
callback));
RunNextOperationIfNeeded();
return net::ERR_IO_PENDING;
}
int SimpleEntryImpl::WriteData(int stream_index,
int offset,
net::IOBuffer* buf,
int buf_len,
const CompletionCallback& callback,
bool truncate) {
DCHECK(io_thread_checker_.CalledOnValidThread());
if (stream_index < 0 || stream_index >= kSimpleEntryFileCount || offset < 0 ||
buf_len < 0) {
RecordWriteResult(WRITE_RESULT_INVALID_ARGUMENT);
return net::ERR_INVALID_ARGUMENT;
}
if (backend_.get() && offset + buf_len > backend_->GetMaxFileSize()) {
RecordWriteResult(WRITE_RESULT_OVER_MAX_SIZE);
return net::ERR_FAILED;
}
int ret_value = net::ERR_FAILED;
if (state_ == STATE_READY && pending_operations_.size() == 0) {
// We can only do optimistic Write if there is no pending operations, so
// that we are sure that the next call to RunNextOperationIfNeeded will
// actually run the write operation that sets the stream size. It also
// prevents from previous possibly-conflicting writes that could be stacked
// in the |pending_operations_|. We could optimize this for when we have
// only read operations enqueued.
// TODO(gavinp,pasko): For performance, don't use a copy of an IOBuffer
// here to avoid paying the price of the RefCountedThreadSafe atomic
// operations.
IOBuffer* buf_copy = NULL;
if (buf) {
buf_copy = new IOBuffer(buf_len);
memcpy(buf_copy->data(), buf->data(), buf_len);
}
pending_operations_.push(
base::Bind(&SimpleEntryImpl::WriteDataInternal, this, stream_index,
offset, make_scoped_refptr(buf_copy), buf_len,
CompletionCallback(), truncate));
ret_value = buf_len;
} else {
pending_operations_.push(
base::Bind(&SimpleEntryImpl::WriteDataInternal, this, stream_index,
offset, make_scoped_refptr(buf), buf_len, callback,
truncate));
ret_value = net::ERR_IO_PENDING;
}
RunNextOperationIfNeeded();
return ret_value;
}
int SimpleEntryImpl::ReadSparseData(int64 offset,
net::IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) {
DCHECK(io_thread_checker_.CalledOnValidThread());
// TODO(gavinp): Determine if the simple backend should support sparse data.
NOTIMPLEMENTED();
return net::ERR_FAILED;
}
int SimpleEntryImpl::WriteSparseData(int64 offset,
net::IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) {
DCHECK(io_thread_checker_.CalledOnValidThread());
// TODO(gavinp): Determine if the simple backend should support sparse data.
NOTIMPLEMENTED();
return net::ERR_FAILED;
}
int SimpleEntryImpl::GetAvailableRange(int64 offset,
int len,
int64* start,
const CompletionCallback& callback) {
DCHECK(io_thread_checker_.CalledOnValidThread());
// TODO(gavinp): Determine if the simple backend should support sparse data.
NOTIMPLEMENTED();
return net::ERR_FAILED;
}
bool SimpleEntryImpl::CouldBeSparse() const {
DCHECK(io_thread_checker_.CalledOnValidThread());
// TODO(gavinp): Determine if the simple backend should support sparse data.
return false;
}
void SimpleEntryImpl::CancelSparseIO() {
DCHECK(io_thread_checker_.CalledOnValidThread());
// TODO(gavinp): Determine if the simple backend should support sparse data.
NOTIMPLEMENTED();
}
int SimpleEntryImpl::ReadyForSparseIO(const CompletionCallback& callback) {
DCHECK(io_thread_checker_.CalledOnValidThread());
// TODO(gavinp): Determine if the simple backend should support sparse data.
NOTIMPLEMENTED();
return net::ERR_FAILED;
}
SimpleEntryImpl::~SimpleEntryImpl() {
DCHECK(io_thread_checker_.CalledOnValidThread());
DCHECK_EQ(0U, pending_operations_.size());
DCHECK(state_ == STATE_UNINITIALIZED || state_ == STATE_FAILURE);
DCHECK(!synchronous_entry_);
RemoveSelfFromBackend();
}
void SimpleEntryImpl::MakeUninitialized() {
state_ = STATE_UNINITIALIZED;
std::memset(crc32s_end_offset_, 0, sizeof(crc32s_end_offset_));
std::memset(crc32s_, 0, sizeof(crc32s_));
std::memset(have_written_, 0, sizeof(have_written_));
std::memset(data_size_, 0, sizeof(data_size_));
std::memset(crc_check_state_, 0, sizeof(crc_check_state_));
}
void SimpleEntryImpl::ReturnEntryToCaller(Entry** out_entry) {
DCHECK(out_entry);
++open_count_;
AddRef(); // Balanced in Close()
*out_entry = this;
}
void SimpleEntryImpl::RemoveSelfFromBackend() {
if (!backend_.get())
return;
backend_->OnDeactivated(this);
backend_.reset();
}
void SimpleEntryImpl::MarkAsDoomed() {
if (!backend_.get())
return;
backend_->index()->Remove(key_);
RemoveSelfFromBackend();
}
void SimpleEntryImpl::RunNextOperationIfNeeded() {
DCHECK(io_thread_checker_.CalledOnValidThread());
UMA_HISTOGRAM_CUSTOM_COUNTS("SimpleCache.EntryOperationsPending",
pending_operations_.size(), 0, 100, 20);
if (!pending_operations_.empty() && state_ != STATE_IO_PENDING) {
base::Closure operation = pending_operations_.front();
pending_operations_.pop();
operation.Run();
// |this| may have been deleted.
}
}
void SimpleEntryImpl::OpenEntryInternal(const CompletionCallback& callback,
Entry** out_entry) {
ScopedOperationRunner operation_runner(this);
if (state_ == STATE_READY) {
ReturnEntryToCaller(out_entry);
MessageLoopProxy::current()->PostTask(FROM_HERE, base::Bind(callback,
net::OK));
return;
} else if (state_ == STATE_FAILURE) {
if (!callback.is_null()) {
MessageLoopProxy::current()->PostTask(FROM_HERE, base::Bind(
callback, net::ERR_FAILED));
}
return;
}
DCHECK_EQ(STATE_UNINITIALIZED, state_);
DCHECK(!synchronous_entry_);
state_ = STATE_IO_PENDING;
const base::TimeTicks start_time = base::TimeTicks::Now();
typedef SimpleSynchronousEntry* PointerToSimpleSynchronousEntry;
scoped_ptr<PointerToSimpleSynchronousEntry> sync_entry(
new PointerToSimpleSynchronousEntry());
scoped_ptr<int> result(new int());
Closure task = base::Bind(&SimpleSynchronousEntry::OpenEntry, path_,
entry_hash_, sync_entry.get(), result.get());
Closure reply = base::Bind(&SimpleEntryImpl::CreationOperationComplete, this,
callback, start_time, base::Passed(&sync_entry),
base::Passed(&result), out_entry);
worker_pool_->PostTaskAndReply(FROM_HERE, task, reply);
}
void SimpleEntryImpl::CreateEntryInternal(const CompletionCallback& callback,
Entry** out_entry) {
ScopedOperationRunner operation_runner(this);
if (state_ != STATE_UNINITIALIZED) {
// There is already an active normal entry.
if (!callback.is_null()) {
MessageLoopProxy::current()->PostTask(FROM_HERE, base::Bind(
callback, net::ERR_FAILED));
}
return;
}
DCHECK_EQ(STATE_UNINITIALIZED, state_);
DCHECK(!synchronous_entry_);
state_ = STATE_IO_PENDING;
// Since we don't know the correct values for |last_used_| and
// |last_modified_| yet, we make this approximation.
last_used_ = last_modified_ = base::Time::Now();
// If creation succeeds, we should mark all streams to be saved on close.
for (int i = 0; i < kSimpleEntryFileCount; ++i)
have_written_[i] = true;
const base::TimeTicks start_time = base::TimeTicks::Now();
typedef SimpleSynchronousEntry* PointerToSimpleSynchronousEntry;
scoped_ptr<PointerToSimpleSynchronousEntry> sync_entry(
new PointerToSimpleSynchronousEntry());
scoped_ptr<int> result(new int());
Closure task = base::Bind(&SimpleSynchronousEntry::CreateEntry, path_, key_,
entry_hash_, sync_entry.get(), result.get());
Closure reply = base::Bind(&SimpleEntryImpl::CreationOperationComplete, this,
callback, start_time, base::Passed(&sync_entry),
base::Passed(&result), out_entry);
worker_pool_->PostTaskAndReply(FROM_HERE, task, reply);
}
void SimpleEntryImpl::CloseInternal() {
DCHECK(io_thread_checker_.CalledOnValidThread());
typedef SimpleSynchronousEntry::CRCRecord CRCRecord;
scoped_ptr<std::vector<CRCRecord> >
crc32s_to_write(new std::vector<CRCRecord>());
if (state_ == STATE_READY) {
DCHECK(synchronous_entry_);
state_ = STATE_IO_PENDING;
for (int i = 0; i < kSimpleEntryFileCount; ++i) {
if (have_written_[i]) {
if (GetDataSize(i) == crc32s_end_offset_[i]) {
int32 crc = GetDataSize(i) == 0 ? crc32(0, Z_NULL, 0) : crc32s_[i];
crc32s_to_write->push_back(CRCRecord(i, true, crc));
} else {
crc32s_to_write->push_back(CRCRecord(i, false, 0));
}
}
}
} else {
DCHECK(STATE_UNINITIALIZED == state_ || STATE_FAILURE == state_);
}
if (synchronous_entry_) {
Closure task = base::Bind(&SimpleSynchronousEntry::Close,
base::Unretained(synchronous_entry_),
base::Passed(&crc32s_to_write));
Closure reply = base::Bind(&SimpleEntryImpl::CloseOperationComplete, this);
synchronous_entry_ = NULL;
worker_pool_->PostTaskAndReply(FROM_HERE, task, reply);
for (int i = 0; i < kSimpleEntryFileCount; ++i) {
if (!have_written_[i]) {
UMA_HISTOGRAM_ENUMERATION("SimpleCache.CheckCRCResult",
crc_check_state_[i], CRC_CHECK_MAX);
}
}
} else {
synchronous_entry_ = NULL;
CloseOperationComplete();
}
}
void SimpleEntryImpl::ReadDataInternal(int stream_index,
int offset,
net::IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) {
DCHECK(io_thread_checker_.CalledOnValidThread());
ScopedOperationRunner operation_runner(this);
if (state_ == STATE_FAILURE || state_ == STATE_UNINITIALIZED) {
if (!callback.is_null()) {
RecordReadResult(READ_RESULT_BAD_STATE);
MessageLoopProxy::current()->PostTask(FROM_HERE, base::Bind(
callback, net::ERR_FAILED));
}
return;
}
DCHECK_EQ(STATE_READY, state_);
if (offset >= GetDataSize(stream_index) || offset < 0 || !buf_len) {
RecordReadResult(READ_RESULT_FAST_EMPTY_RETURN);
// If there is nothing to read, we bail out before setting state_ to
// STATE_IO_PENDING.
if (!callback.is_null())
MessageLoopProxy::current()->PostTask(FROM_HERE, base::Bind(
callback, 0));
return;
}
buf_len = std::min(buf_len, GetDataSize(stream_index) - offset);
state_ = STATE_IO_PENDING;
if (backend_.get())
backend_->index()->UseIfExists(key_);
scoped_ptr<uint32> read_crc32(new uint32());
scoped_ptr<int> result(new int());
Closure task = base::Bind(&SimpleSynchronousEntry::ReadData,
base::Unretained(synchronous_entry_),
stream_index, offset, make_scoped_refptr(buf),
buf_len, read_crc32.get(), result.get());
Closure reply = base::Bind(&SimpleEntryImpl::ReadOperationComplete, this,
stream_index, offset, callback,
base::Passed(&read_crc32), base::Passed(&result));
worker_pool_->PostTaskAndReply(FROM_HERE, task, reply);
}
void SimpleEntryImpl::WriteDataInternal(int stream_index,
int offset,
net::IOBuffer* buf,
int buf_len,
const CompletionCallback& callback,
bool truncate) {
DCHECK(io_thread_checker_.CalledOnValidThread());
ScopedOperationRunner operation_runner(this);
if (state_ == STATE_FAILURE || state_ == STATE_UNINITIALIZED) {
RecordWriteResult(WRITE_RESULT_BAD_STATE);
if (!callback.is_null()) {
// We need to posttask so that we don't go in a loop when we call the
// callback directly.
MessageLoopProxy::current()->PostTask(FROM_HERE, base::Bind(
callback, net::ERR_FAILED));
}
// |this| may be destroyed after return here.
return;
}
DCHECK_EQ(STATE_READY, state_);
state_ = STATE_IO_PENDING;
if (backend_.get())
backend_->index()->UseIfExists(key_);
// It is easy to incrementally compute the CRC from [0 .. |offset + buf_len|)
// if |offset == 0| or we have already computed the CRC for [0 .. offset).
// We rely on most write operations being sequential, start to end to compute
// the crc of the data. When we write to an entry and close without having
// done a sequential write, we don't check the CRC on read.
if (offset == 0 || crc32s_end_offset_[stream_index] == offset) {
uint32 initial_crc = (offset != 0) ? crc32s_[stream_index]
: crc32(0, Z_NULL, 0);
if (buf_len > 0) {
crc32s_[stream_index] = crc32(initial_crc,
reinterpret_cast<const Bytef*>(buf->data()),
buf_len);
}
crc32s_end_offset_[stream_index] = offset + buf_len;
}
if (truncate) {
data_size_[stream_index] = offset + buf_len;
} else {
data_size_[stream_index] = std::max(offset + buf_len,
GetDataSize(stream_index));
}
// Since we don't know the correct values for |last_used_| and
// |last_modified_| yet, we make this approximation.
last_used_ = last_modified_ = base::Time::Now();
have_written_[stream_index] = true;
scoped_ptr<int> result(new int());
Closure task = base::Bind(&SimpleSynchronousEntry::WriteData,
base::Unretained(synchronous_entry_),
stream_index, offset, make_scoped_refptr(buf),
buf_len, truncate, result.get());
Closure reply = base::Bind(&SimpleEntryImpl::WriteOperationComplete, this,
stream_index, callback, base::Passed(&result));
worker_pool_->PostTaskAndReply(FROM_HERE, task, reply);
}
void SimpleEntryImpl::CreationOperationComplete(
const CompletionCallback& completion_callback,
const base::TimeTicks& start_time,
scoped_ptr<SimpleSynchronousEntry*> in_sync_entry,
scoped_ptr<int> in_result,
Entry** out_entry) {
DCHECK(io_thread_checker_.CalledOnValidThread());
DCHECK_EQ(state_, STATE_IO_PENDING);
DCHECK(in_sync_entry);
DCHECK(in_result);
ScopedOperationRunner operation_runner(this);
UMA_HISTOGRAM_BOOLEAN(
"SimpleCache.EntryCreationResult", *in_result == net::OK);
if (*in_result != net::OK) {
if (*in_result!= net::ERR_FILE_EXISTS)
MarkAsDoomed();
if (!completion_callback.is_null()) {
MessageLoopProxy::current()->PostTask(FROM_HERE, base::Bind(
completion_callback, net::ERR_FAILED));
}
MakeUninitialized();
return;
}
// If out_entry is NULL, it means we already called ReturnEntryToCaller from
// the optimistic Create case.
if (out_entry)
ReturnEntryToCaller(out_entry);
state_ = STATE_READY;
synchronous_entry_ = *in_sync_entry;
if (key_.empty()) {
key_ = synchronous_entry_->key();
} else {
// This should only be triggered when creating an entry. The key check in
// the open case is handled in SimpleBackendImpl.
DCHECK_EQ(key_, synchronous_entry_->key());
}
SetSynchronousData();
UMA_HISTOGRAM_TIMES("SimpleCache.EntryCreationTime",
(base::TimeTicks::Now() - start_time));
if (!completion_callback.is_null()) {
MessageLoopProxy::current()->PostTask(FROM_HERE, base::Bind(
completion_callback, net::OK));
}
}
void SimpleEntryImpl::EntryOperationComplete(
int stream_index,
const CompletionCallback& completion_callback,
scoped_ptr<int> result) {
DCHECK(io_thread_checker_.CalledOnValidThread());
DCHECK(synchronous_entry_);
DCHECK_EQ(STATE_IO_PENDING, state_);
DCHECK(result);
state_ = STATE_READY;
if (*result < 0) {
MarkAsDoomed();
state_ = STATE_FAILURE;
crc32s_end_offset_[stream_index] = 0;
} else {
SetSynchronousData();
}
if (!completion_callback.is_null()) {
MessageLoopProxy::current()->PostTask(FROM_HERE, base::Bind(
completion_callback, *result));
}
RunNextOperationIfNeeded();
}
void SimpleEntryImpl::ReadOperationComplete(
int stream_index,
int offset,
const CompletionCallback& completion_callback,
scoped_ptr<uint32> read_crc32,
scoped_ptr<int> result) {
DCHECK(io_thread_checker_.CalledOnValidThread());
DCHECK(synchronous_entry_);
DCHECK_EQ(STATE_IO_PENDING, state_);
DCHECK(read_crc32);
DCHECK(result);
if (*result > 0 && crc32s_end_offset_[stream_index] == offset) {
uint32 current_crc = offset == 0 ? crc32(0, Z_NULL, 0)
: crc32s_[stream_index];
crc32s_[stream_index] = crc32_combine(current_crc, *read_crc32, *result);
crc32s_end_offset_[stream_index] += *result;
if (!have_written_[stream_index] &&
GetDataSize(stream_index) == crc32s_end_offset_[stream_index]) {
// We have just read a file from start to finish, and so we have
// computed a crc of the entire file. We can check it now. If a cache
// entry has a single reader, the normal pattern is to read from start
// to finish.
// Other cases are possible. In the case of two readers on the same
// entry, one reader can be behind the other. In this case we compute
// the crc as the most advanced reader progresses, and check it for
// both readers as they read the last byte.
scoped_ptr<int> new_result(new int());
Closure task = base::Bind(&SimpleSynchronousEntry::CheckEOFRecord,
base::Unretained(synchronous_entry_),
stream_index, crc32s_[stream_index],
new_result.get());
Closure reply = base::Bind(&SimpleEntryImpl::ChecksumOperationComplete,
this, *result, stream_index,
completion_callback,
base::Passed(&new_result));
worker_pool_->PostTaskAndReply(FROM_HERE, task, reply);
crc_check_state_[stream_index] = CRC_CHECK_DONE;
return;
}
}
if (*result < 0) {
RecordReadResult(READ_RESULT_SYNC_READ_FAILURE);
} else {
RecordReadResult(READ_RESULT_SUCCESS);
if (crc_check_state_[stream_index] == CRC_CHECK_NEVER_READ_TO_END &&
offset + *result == GetDataSize(stream_index)) {
crc_check_state_[stream_index] = CRC_CHECK_NOT_DONE;
}
}
EntryOperationComplete(stream_index, completion_callback, result.Pass());
}
void SimpleEntryImpl::WriteOperationComplete(
int stream_index,
const CompletionCallback& completion_callback,
scoped_ptr<int> result) {
if (*result >= 0)
RecordWriteResult(WRITE_RESULT_SUCCESS);
else
RecordWriteResult(WRITE_RESULT_SYNC_WRITE_FAILURE);
EntryOperationComplete(stream_index, completion_callback, result.Pass());
}
void SimpleEntryImpl::ChecksumOperationComplete(
int orig_result,
int stream_index,
const CompletionCallback& completion_callback,
scoped_ptr<int> result) {
DCHECK(io_thread_checker_.CalledOnValidThread());
DCHECK(synchronous_entry_);
DCHECK_EQ(STATE_IO_PENDING, state_);
DCHECK(result);
if (*result == net::OK) {
*result = orig_result;
if (orig_result >= 0)
RecordReadResult(READ_RESULT_SUCCESS);
else
RecordReadResult(READ_RESULT_SYNC_READ_FAILURE);
} else {
RecordReadResult(READ_RESULT_SYNC_CHECKSUM_FAILURE);
}
EntryOperationComplete(stream_index, completion_callback, result.Pass());
}
void SimpleEntryImpl::CloseOperationComplete() {
DCHECK(!synchronous_entry_);
DCHECK_EQ(0, open_count_);
DCHECK(STATE_IO_PENDING == state_ || STATE_FAILURE == state_ ||
STATE_UNINITIALIZED == state_);
MakeUninitialized();
RunNextOperationIfNeeded();
}
void SimpleEntryImpl::SetSynchronousData() {
DCHECK(io_thread_checker_.CalledOnValidThread());
DCHECK(synchronous_entry_);
DCHECK_EQ(STATE_READY, state_);
// TODO(felipeg): These copies to avoid data races are not optimal. While
// adding an IO thread index (for fast misses etc...), we can store this data
// in that structure. This also solves problems with last_used() on ext4
// filesystems not being accurate.
last_used_ = synchronous_entry_->last_used();
last_modified_ = synchronous_entry_->last_modified();
for (int i = 0; i < kSimpleEntryFileCount; ++i)
data_size_[i] = synchronous_entry_->data_size(i);
if (backend_.get())
backend_->index()->UpdateEntrySize(key_, synchronous_entry_->GetFileSize());
}
} // namespace disk_cache
|