summaryrefslogtreecommitdiffstats
path: root/net/disk_cache/stress_cache.cc
blob: 9c3c5a6333eb9d80fcb0b90c3f6c802553a82f45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// This is a simple application that stress-tests the crash recovery of the disk
// cache. The main application starts a copy of itself on a loop, checking the
// exit code of the child process. When the child dies in an unexpected way,
// the main application quits.

// The child application has two threads: one to exercise the cache in an
// infinite loop, and another one to asynchronously kill the process.

// A regular build should never crash.
// To test that the disk cache doesn't generate critical errors with regular
// application level crashes, edit stress_support.h.

#include <string>
#include <vector>

#include "base/at_exit.h"
#include "base/bind.h"
#include "base/command_line.h"
#include "base/debug/debugger.h"
#include "base/files/file_path.h"
#include "base/logging.h"
#include "base/message_loop/message_loop.h"
#include "base/path_service.h"
#include "base/process/kill.h"
#include "base/process/launch.h"
#include "base/process/process_handle.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/utf_string_conversions.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/base/test_completion_callback.h"
#include "net/disk_cache/backend_impl.h"
#include "net/disk_cache/disk_cache.h"
#include "net/disk_cache/disk_cache_test_util.h"
#include "net/disk_cache/stress_support.h"
#include "net/disk_cache/trace.h"

#if defined(OS_WIN)
#include "base/logging_win.h"
#endif

using base::Time;

const int kError = -1;
const int kExpectedCrash = 100;

// Starts a new process.
int RunSlave(int iteration) {
  base::FilePath exe;
  PathService::Get(base::FILE_EXE, &exe);

  CommandLine cmdline(exe);
  cmdline.AppendArg(base::IntToString(iteration));

  base::ProcessHandle handle;
  if (!base::LaunchProcess(cmdline, base::LaunchOptions(), &handle)) {
    printf("Unable to run test\n");
    return kError;
  }

  int exit_code;
  if (!base::WaitForExitCode(handle, &exit_code)) {
    printf("Unable to get return code\n");
    return kError;
  }
  return exit_code;
}

// Main loop for the master process.
int MasterCode() {
  for (int i = 0; i < 100000; i++) {
    int ret = RunSlave(i);
    if (kExpectedCrash != ret)
      return ret;
  }

  printf("More than enough...\n");

  return 0;
}

// -----------------------------------------------------------------------

std::string GenerateStressKey() {
  char key[20 * 1024];
  size_t size = 50 + rand() % 20000;
  CacheTestFillBuffer(key, size, true);

  key[size - 1] = '\0';
  return std::string(key);
}

// This thread will loop forever, adding and removing entries from the cache.
// iteration is the current crash cycle, so the entries on the cache are marked
// to know which instance of the application wrote them.
void StressTheCache(int iteration) {
  int cache_size = 0x2000000;  // 32MB.
  uint32 mask = 0xfff;  // 4096 entries.

  base::FilePath path;
  PathService::Get(base::DIR_TEMP, &path);
  path = path.AppendASCII("cache_test_stress");

  base::Thread cache_thread("CacheThread");
  if (!cache_thread.StartWithOptions(
          base::Thread::Options(base::MessageLoop::TYPE_IO, 0)))
    return;

  disk_cache::BackendImpl* cache =
      new disk_cache::BackendImpl(path, mask,
                                  cache_thread.message_loop_proxy().get(),
                                  NULL);
  cache->SetMaxSize(cache_size);
  cache->SetFlags(disk_cache::kNoLoadProtection);

  net::TestCompletionCallback cb;
  int rv = cache->Init(cb.callback());

  if (cb.GetResult(rv) != net::OK) {
    printf("Unable to initialize cache.\n");
    return;
  }
  printf("Iteration %d, initial entries: %d\n", iteration,
         cache->GetEntryCount());

  int seed = static_cast<int>(Time::Now().ToInternalValue());
  srand(seed);

  // kNumKeys is meant to be enough to have about 3x or 4x iterations before
  // the process crashes.
#ifdef NDEBUG
  const int kNumKeys = 4000;
#else
  const int kNumKeys = 1200;
#endif
  const int kNumEntries = 30;
  std::string keys[kNumKeys];
  disk_cache::Entry* entries[kNumEntries] = {0};

  for (int i = 0; i < kNumKeys; i++) {
    keys[i] = GenerateStressKey();
  }

  const int kSize = 20000;
  scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
  memset(buffer->data(), 'k', kSize);

  for (int i = 0;; i++) {
    int slot = rand() % kNumEntries;
    int key = rand() % kNumKeys;
    bool truncate = (rand() % 2 == 0);
    int size = kSize - (rand() % 20) * kSize / 20;

    if (entries[slot])
      entries[slot]->Close();

    net::TestCompletionCallback cb;
    rv = cache->OpenEntry(keys[key], &entries[slot], cb.callback());
    if (cb.GetResult(rv) != net::OK) {
      rv = cache->CreateEntry(keys[key], &entries[slot], cb.callback());
      CHECK_EQ(net::OK, cb.GetResult(rv));
    }

    base::snprintf(buffer->data(), kSize,
                   "i: %d iter: %d, size: %d, truncate: %d     ", i, iteration,
                   size, truncate ? 1 : 0);
    rv = entries[slot]->WriteData(0, 0, buffer.get(), size, cb.callback(),
                                  truncate);
    CHECK_EQ(size, cb.GetResult(rv));

    if (rand() % 100 > 80) {
      key = rand() % kNumKeys;
      net::TestCompletionCallback cb2;
      rv = cache->DoomEntry(keys[key], cb2.callback());
      cb2.GetResult(rv);
    }

    if (!(i % 100))
      printf("Entries: %d    \r", i);
  }
}

// We want to prevent the timer thread from killing the process while we are
// waiting for the debugger to attach.
bool g_crashing = false;

// RunSoon() and CrashCallback() reference each other, unfortunately.
void RunSoon(base::MessageLoop* target_loop);

void CrashCallback() {
  // Keep trying to run.
  RunSoon(base::MessageLoop::current());

  if (g_crashing)
    return;

  if (rand() % 100 > 30) {
    printf("sweet death...\n");
#if defined(OS_WIN)
    // Windows does more work on _exit() that we would like, so we use Kill.
    base::KillProcessById(base::GetCurrentProcId(), kExpectedCrash, false);
#elif defined(OS_POSIX)
    // On POSIX, _exit() will terminate the process with minimal cleanup,
    // and it is cleaner than killing.
    _exit(kExpectedCrash);
#endif
  }
}

void RunSoon(base::MessageLoop* target_loop) {
  const base::TimeDelta kTaskDelay = base::TimeDelta::FromSeconds(10);
  target_loop->PostDelayedTask(
      FROM_HERE, base::Bind(&CrashCallback), kTaskDelay);
}

// We leak everything here :)
bool StartCrashThread() {
  base::Thread* thread = new base::Thread("party_crasher");
  if (!thread->Start())
    return false;

  RunSoon(thread->message_loop());
  return true;
}

void CrashHandler(const std::string& str) {
  g_crashing = true;
  base::debug::BreakDebugger();
}

bool MessageHandler(int severity, const char* file, int line,
                    size_t message_start, const std::string& str) {
  const size_t kMaxMessageLen = 48;
  char message[kMaxMessageLen];
  size_t len = std::min(str.length() - message_start, kMaxMessageLen - 1);

  memcpy(message, str.c_str() + message_start, len);
  message[len] = '\0';
#if !defined(DISK_CACHE_TRACE_TO_LOG)
  disk_cache::Trace("%s", message);
#endif
  return false;
}

// -----------------------------------------------------------------------

#if defined(OS_WIN)
// {B9A153D4-31C3-48e4-9ABF-D54383F14A0D}
const GUID kStressCacheTraceProviderName = {
    0xb9a153d4, 0x31c3, 0x48e4,
        { 0x9a, 0xbf, 0xd5, 0x43, 0x83, 0xf1, 0x4a, 0xd } };
#endif

int main(int argc, const char* argv[]) {
  // Setup an AtExitManager so Singleton objects will be destructed.
  base::AtExitManager at_exit_manager;

  if (argc < 2)
    return MasterCode();

  logging::SetLogAssertHandler(CrashHandler);
  logging::SetLogMessageHandler(MessageHandler);

#if defined(OS_WIN)
  logging::LogEventProvider::Initialize(kStressCacheTraceProviderName);
#else
  CommandLine::Init(argc, argv);
  logging::LoggingSettings settings;
  settings.logging_dest = logging::LOG_TO_SYSTEM_DEBUG_LOG;
  logging::InitLogging(settings);
#endif

  // Some time for the memory manager to flush stuff.
  base::PlatformThread::Sleep(base::TimeDelta::FromSeconds(3));
  base::MessageLoop message_loop(base::MessageLoop::TYPE_IO);

  char* end;
  long int iteration = strtol(argv[1], &end, 0);

  if (!StartCrashThread()) {
    printf("failed to start thread\n");
    return kError;
  }

  StressTheCache(iteration);
  return 0;
}