summaryrefslogtreecommitdiffstats
path: root/net/quic/congestion_control/tcp_cubic_bytes_sender_test.cc
blob: 70606dc3a82c3ce1ce7b2bcb8d1a56e44e26d965 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
// Copyright (c) 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/quic/congestion_control/tcp_cubic_bytes_sender.h"

#include <algorithm>

#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "net/quic/congestion_control/rtt_stats.h"
#include "net/quic/crypto/crypto_protocol.h"
#include "net/quic/proto/cached_network_parameters.pb.h"
#include "net/quic/quic_flags.h"
#include "net/quic/quic_protocol.h"
#include "net/quic/quic_utils.h"
#include "net/quic/test_tools/mock_clock.h"
#include "net/quic/test_tools/quic_config_peer.h"
#include "net/quic/test_tools/quic_test_utils.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace net {
namespace test {

// TODO(ianswett): A number of theses tests were written with the assumption of
// an initial CWND of 10. They have carefully calculated values which should be
// updated to be based on kInitialCongestionWindowInsecure.
const uint32 kInitialCongestionWindowPackets = 10;
const uint32 kDefaultWindowTCP =
    kInitialCongestionWindowPackets * kDefaultTCPMSS;
const float kRenoBeta = 0.7f;  // Reno backoff factor.

class TcpCubicBytesSenderPeer : public TcpCubicBytesSender {
 public:
  TcpCubicBytesSenderPeer(const QuicClock* clock, bool reno)
      : TcpCubicBytesSender(clock,
                            &rtt_stats_,
                            reno,
                            kInitialCongestionWindowPackets,
                            kMaxCongestionWindow,
                            &stats_) {}

  const HybridSlowStart& hybrid_slow_start() const {
    return hybrid_slow_start_;
  }

  float GetRenoBeta() const { return RenoBeta(); }

  RttStats rtt_stats_;
  QuicConnectionStats stats_;
};

class TcpCubicBytesSenderTest : public ::testing::Test {
 protected:
  TcpCubicBytesSenderTest()
      : one_ms_(QuicTime::Delta::FromMilliseconds(1)),
        sender_(new TcpCubicBytesSenderPeer(&clock_, true)),
        packet_number_(1),
        acked_packet_number_(0),
        bytes_in_flight_(0) {}

  int SendAvailableSendWindow() {
    // Send as long as TimeUntilSend returns Zero.
    int packets_sent = 0;
    bool can_send = sender_->TimeUntilSend(clock_.Now(), bytes_in_flight_,
                                           HAS_RETRANSMITTABLE_DATA).IsZero();
    while (can_send) {
      sender_->OnPacketSent(clock_.Now(), bytes_in_flight_, packet_number_++,
                            kDefaultTCPMSS, HAS_RETRANSMITTABLE_DATA);
      ++packets_sent;
      bytes_in_flight_ += kDefaultTCPMSS;
      can_send = sender_->TimeUntilSend(clock_.Now(), bytes_in_flight_,
                                        HAS_RETRANSMITTABLE_DATA).IsZero();
    }
    return packets_sent;
  }

  // Normal is that TCP acks every other segment.
  void AckNPackets(int n) {
    sender_->rtt_stats_.UpdateRtt(QuicTime::Delta::FromMilliseconds(60),
                                  QuicTime::Delta::Zero(), clock_.Now());
    SendAlgorithmInterface::CongestionVector acked_packets;
    SendAlgorithmInterface::CongestionVector lost_packets;
    for (int i = 0; i < n; ++i) {
      ++acked_packet_number_;
      acked_packets.push_back(
          std::make_pair(acked_packet_number_, kDefaultTCPMSS));
    }
    sender_->OnCongestionEvent(true, bytes_in_flight_, acked_packets,
                               lost_packets);
    bytes_in_flight_ -= n * kDefaultTCPMSS;
    clock_.AdvanceTime(one_ms_);
  }

  void LoseNPackets(int n) {
    SendAlgorithmInterface::CongestionVector acked_packets;
    SendAlgorithmInterface::CongestionVector lost_packets;
    for (int i = 0; i < n; ++i) {
      ++acked_packet_number_;
      lost_packets.push_back(
          std::make_pair(acked_packet_number_, kDefaultTCPMSS));
    }
    sender_->OnCongestionEvent(false, bytes_in_flight_, acked_packets,
                               lost_packets);
    bytes_in_flight_ -= n * kDefaultTCPMSS;
  }

  // Does not increment acked_packet_number_.
  void LosePacket(QuicPacketNumber packet_number) {
    SendAlgorithmInterface::CongestionVector acked_packets;
    SendAlgorithmInterface::CongestionVector lost_packets;
    lost_packets.push_back(std::make_pair(packet_number, kDefaultTCPMSS));
    sender_->OnCongestionEvent(false, bytes_in_flight_, acked_packets,
                               lost_packets);
    bytes_in_flight_ -= kDefaultTCPMSS;
  }

  const QuicTime::Delta one_ms_;
  MockClock clock_;
  scoped_ptr<TcpCubicBytesSenderPeer> sender_;
  QuicPacketNumber packet_number_;
  QuicPacketNumber acked_packet_number_;
  QuicByteCount bytes_in_flight_;
};

TEST_F(TcpCubicBytesSenderTest, SimpleSender) {
  // At startup make sure we are at the default.
  EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
  // At startup make sure we can send.
  EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0,
                                     HAS_RETRANSMITTABLE_DATA).IsZero());
  // Make sure we can send.
  EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0,
                                     HAS_RETRANSMITTABLE_DATA).IsZero());
  // And that window is un-affected.
  EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());

  // Fill the send window with data, then verify that we can't send.
  SendAvailableSendWindow();
  EXPECT_FALSE(sender_->TimeUntilSend(clock_.Now(),
                                      sender_->GetCongestionWindow(),
                                      HAS_RETRANSMITTABLE_DATA).IsZero());
}

TEST_F(TcpCubicBytesSenderTest, ApplicationLimitedSlowStart) {
  // Send exactly 10 packets and ensure the CWND ends at 14 packets.
  const int kNumberOfAcks = 5;
  // At startup make sure we can send.
  EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0,
                                     HAS_RETRANSMITTABLE_DATA).IsZero());
  // Make sure we can send.
  EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0,
                                     HAS_RETRANSMITTABLE_DATA).IsZero());

  SendAvailableSendWindow();
  for (int i = 0; i < kNumberOfAcks; ++i) {
    AckNPackets(2);
  }
  QuicByteCount bytes_to_send = sender_->GetCongestionWindow();
  // It's expected 2 acks will arrive when the bytes_in_flight are greater than
  // half the CWND.
  EXPECT_EQ(kDefaultWindowTCP + kDefaultTCPMSS * 2 * 2, bytes_to_send);
}

TEST_F(TcpCubicBytesSenderTest, ExponentialSlowStart) {
  const int kNumberOfAcks = 20;
  // At startup make sure we can send.
  EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0,
                                     HAS_RETRANSMITTABLE_DATA).IsZero());
  EXPECT_EQ(QuicBandwidth::Zero(), sender_->BandwidthEstimate());
  // Make sure we can send.
  EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0,
                                     HAS_RETRANSMITTABLE_DATA).IsZero());

  for (int i = 0; i < kNumberOfAcks; ++i) {
    // Send our full send window.
    SendAvailableSendWindow();
    AckNPackets(2);
  }
  const QuicByteCount cwnd = sender_->GetCongestionWindow();
  EXPECT_EQ(kDefaultWindowTCP + kDefaultTCPMSS * 2 * kNumberOfAcks, cwnd);
  EXPECT_EQ(QuicBandwidth::FromBytesAndTimeDelta(
                cwnd, sender_->rtt_stats_.smoothed_rtt()),
            sender_->BandwidthEstimate());
}

TEST_F(TcpCubicBytesSenderTest, SlowStartPacketLoss) {
  sender_->SetNumEmulatedConnections(1);
  const int kNumberOfAcks = 10;
  for (int i = 0; i < kNumberOfAcks; ++i) {
    // Send our full send window.
    SendAvailableSendWindow();
    AckNPackets(2);
  }
  SendAvailableSendWindow();
  QuicByteCount expected_send_window =
      kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks);
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());

  // Lose a packet to exit slow start.
  LoseNPackets(1);
  size_t packets_in_recovery_window = expected_send_window / kDefaultTCPMSS;

  // We should now have fallen out of slow start with a reduced window.
  expected_send_window *= kRenoBeta;
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());

  // Recovery phase. We need to ack every packet in the recovery window before
  // we exit recovery.
  size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS;
  DVLOG(1) << "number_packets: " << number_of_packets_in_window;
  AckNPackets(packets_in_recovery_window);
  SendAvailableSendWindow();
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());

  // We need to ack an entire window before we increase CWND by 1.
  AckNPackets(number_of_packets_in_window - 2);
  SendAvailableSendWindow();
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());

  // Next ack should increase cwnd by 1.
  AckNPackets(1);
  expected_send_window += kDefaultTCPMSS;
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());

  // Now RTO and ensure slow start gets reset.
  EXPECT_TRUE(sender_->hybrid_slow_start().started());
  sender_->OnRetransmissionTimeout(true);
  EXPECT_FALSE(sender_->hybrid_slow_start().started());
}

TEST_F(TcpCubicBytesSenderTest, NoPRRWhenLessThanOnePacketInFlight) {
  SendAvailableSendWindow();
  LoseNPackets(kInitialCongestionWindowPackets - 1);
  AckNPackets(1);
  // PRR will allow 2 packets for every ack during recovery.
  EXPECT_EQ(2, SendAvailableSendWindow());
  // Simulate abandoning all packets by supplying a bytes_in_flight of 0.
  // PRR should now allow a packet to be sent, even though prr's state variables
  // believe it has sent enough packets.
  EXPECT_EQ(QuicTime::Delta::Zero(),
            sender_->TimeUntilSend(clock_.Now(), 0, HAS_RETRANSMITTABLE_DATA));
}

TEST_F(TcpCubicBytesSenderTest, SlowStartPacketLossPRR) {
  sender_->SetNumEmulatedConnections(1);
  // Test based on the first example in RFC6937.
  // Ack 10 packets in 5 acks to raise the CWND to 20, as in the example.
  const int kNumberOfAcks = 5;
  for (int i = 0; i < kNumberOfAcks; ++i) {
    // Send our full send window.
    SendAvailableSendWindow();
    AckNPackets(2);
  }
  SendAvailableSendWindow();
  QuicByteCount expected_send_window =
      kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks);
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());

  LoseNPackets(1);

  // We should now have fallen out of slow start with a reduced window.
  size_t send_window_before_loss = expected_send_window;
  expected_send_window *= kRenoBeta;
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());

  // Testing TCP proportional rate reduction.
  // We should send packets paced over the received acks for the remaining
  // outstanding packets. The number of packets before we exit recovery is the
  // original CWND minus the packet that has been lost and the one which
  // triggered the loss.
  size_t remaining_packets_in_recovery =
      send_window_before_loss / kDefaultTCPMSS - 2;

  for (size_t i = 0; i < remaining_packets_in_recovery; ++i) {
    AckNPackets(1);
    SendAvailableSendWindow();
    EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
  }

  // We need to ack another window before we increase CWND by 1.
  size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS;
  for (size_t i = 0; i < number_of_packets_in_window; ++i) {
    AckNPackets(1);
    EXPECT_EQ(1, SendAvailableSendWindow());
    EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
  }

  AckNPackets(1);
  expected_send_window += kDefaultTCPMSS;
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}

TEST_F(TcpCubicBytesSenderTest, SlowStartBurstPacketLossPRR) {
  sender_->SetNumEmulatedConnections(1);
  // Test based on the second example in RFC6937, though we also implement
  // forward acknowledgements, so the first two incoming acks will trigger
  // PRR immediately.
  // Ack 20 packets in 10 acks to raise the CWND to 30.
  const int kNumberOfAcks = 10;
  for (int i = 0; i < kNumberOfAcks; ++i) {
    // Send our full send window.
    SendAvailableSendWindow();
    AckNPackets(2);
  }
  SendAvailableSendWindow();
  QuicByteCount expected_send_window =
      kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks);
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());

  // Lose one more than the congestion window reduction, so that after loss,
  // bytes_in_flight is lesser than the congestion window.
  size_t send_window_after_loss = kRenoBeta * expected_send_window;
  size_t num_packets_to_lose =
      (expected_send_window - send_window_after_loss) / kDefaultTCPMSS + 1;
  LoseNPackets(num_packets_to_lose);
  // Immediately after the loss, ensure at least one packet can be sent.
  // Losses without subsequent acks can occur with timer based loss detection.
  EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), bytes_in_flight_,
                                     HAS_RETRANSMITTABLE_DATA).IsZero());
  AckNPackets(1);

  // We should now have fallen out of slow start with a reduced window.
  expected_send_window *= kRenoBeta;
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());

  // Only 2 packets should be allowed to be sent, per PRR-SSRB.
  EXPECT_EQ(2, SendAvailableSendWindow());

  // Ack the next packet, which triggers another loss.
  LoseNPackets(1);
  AckNPackets(1);

  // Send 2 packets to simulate PRR-SSRB.
  EXPECT_EQ(2, SendAvailableSendWindow());

  // Ack the next packet, which triggers another loss.
  LoseNPackets(1);
  AckNPackets(1);

  // Send 2 packets to simulate PRR-SSRB.
  EXPECT_EQ(2, SendAvailableSendWindow());

  // Exit recovery and return to sending at the new rate.
  for (int i = 0; i < kNumberOfAcks; ++i) {
    AckNPackets(1);
    EXPECT_EQ(1, SendAvailableSendWindow());
  }
}

TEST_F(TcpCubicBytesSenderTest, RTOCongestionWindow) {
  EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
  // Expect the window to decrease to the minimum once the RTO fires and slow
  // start threshold to be set to 1/2 of the CWND.
  sender_->OnRetransmissionTimeout(true);
  EXPECT_EQ(2 * kDefaultTCPMSS, sender_->GetCongestionWindow());
  EXPECT_EQ(5u * kDefaultTCPMSS, sender_->GetSlowStartThreshold());
}

TEST_F(TcpCubicBytesSenderTest, RTOCongestionWindowNoRetransmission) {
  EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());

  // Expect the window to remain unchanged if the RTO fires but no packets are
  // retransmitted.
  sender_->OnRetransmissionTimeout(false);
  EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
}

TEST_F(TcpCubicBytesSenderTest, RetransmissionDelay) {
  const int64 kRttMs = 10;
  const int64 kDeviationMs = 3;
  EXPECT_EQ(QuicTime::Delta::Zero(), sender_->RetransmissionDelay());

  sender_->rtt_stats_.UpdateRtt(QuicTime::Delta::FromMilliseconds(kRttMs),
                                QuicTime::Delta::Zero(), clock_.Now());

  // Initial value is to set the median deviation to half of the initial rtt,
  // the median in then multiplied by a factor of 4 and finally the smoothed rtt
  // is added which is the initial rtt.
  QuicTime::Delta expected_delay =
      QuicTime::Delta::FromMilliseconds(kRttMs + kRttMs / 2 * 4);
  EXPECT_EQ(expected_delay, sender_->RetransmissionDelay());

  for (int i = 0; i < 100; ++i) {
    // Run to make sure that we converge.
    sender_->rtt_stats_.UpdateRtt(
        QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs),
        QuicTime::Delta::Zero(), clock_.Now());
    sender_->rtt_stats_.UpdateRtt(
        QuicTime::Delta::FromMilliseconds(kRttMs - kDeviationMs),
        QuicTime::Delta::Zero(), clock_.Now());
  }
  expected_delay = QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs * 4);

  EXPECT_NEAR(kRttMs, sender_->rtt_stats_.smoothed_rtt().ToMilliseconds(), 1);
  EXPECT_NEAR(expected_delay.ToMilliseconds(),
              sender_->RetransmissionDelay().ToMilliseconds(), 1);
  EXPECT_EQ(
      static_cast<int64>(sender_->GetCongestionWindow() * kNumMicrosPerSecond /
                         sender_->rtt_stats_.smoothed_rtt().ToMicroseconds()),
      sender_->BandwidthEstimate().ToBytesPerSecond());
}

TEST_F(TcpCubicBytesSenderTest, TcpCubicResetEpochOnQuiescence) {
  const int kMaxCongestionWindow = 50;
  const QuicByteCount kMaxCongestionWindowBytes =
      kMaxCongestionWindow * kDefaultTCPMSS;
  int num_sent = SendAvailableSendWindow();

  // Make sure we fall out of slow start.
  QuicByteCount saved_cwnd = sender_->GetCongestionWindow();
  LoseNPackets(1);
  EXPECT_GT(saved_cwnd, sender_->GetCongestionWindow());

  // Ack the rest of the outstanding packets to get out of recovery.
  for (int i = 1; i < num_sent; ++i) {
    AckNPackets(1);
  }
  EXPECT_EQ(0u, bytes_in_flight_);

  // Send a new window of data and ack all; cubic growth should occur.
  saved_cwnd = sender_->GetCongestionWindow();
  num_sent = SendAvailableSendWindow();
  for (int i = 0; i < num_sent; ++i) {
    AckNPackets(1);
  }
  EXPECT_LT(saved_cwnd, sender_->GetCongestionWindow());
  EXPECT_GT(kMaxCongestionWindowBytes, sender_->GetCongestionWindow());
  EXPECT_EQ(0u, bytes_in_flight_);

  // Quiescent time of 100 seconds
  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(100000));

  // Send new window of data and ack one packet. Cubic epoch should have
  // been reset; ensure cwnd increase is not dramatic.
  saved_cwnd = sender_->GetCongestionWindow();
  SendAvailableSendWindow();
  AckNPackets(1);
  EXPECT_NEAR(saved_cwnd, sender_->GetCongestionWindow(), kDefaultTCPMSS);
  EXPECT_GT(kMaxCongestionWindowBytes, sender_->GetCongestionWindow());
}

TEST_F(TcpCubicBytesSenderTest, MultipleLossesInOneWindow) {
  SendAvailableSendWindow();
  const QuicByteCount initial_window = sender_->GetCongestionWindow();
  LosePacket(acked_packet_number_ + 1);
  const QuicByteCount post_loss_window = sender_->GetCongestionWindow();
  EXPECT_GT(initial_window, post_loss_window);
  LosePacket(acked_packet_number_ + 3);
  EXPECT_EQ(post_loss_window, sender_->GetCongestionWindow());
  LosePacket(packet_number_ - 1);
  EXPECT_EQ(post_loss_window, sender_->GetCongestionWindow());

  // Lose a later packet and ensure the window decreases.
  LosePacket(packet_number_);
  EXPECT_GT(post_loss_window, sender_->GetCongestionWindow());
}

TEST_F(TcpCubicBytesSenderTest, DontTrackAckPackets) {
  // Send a packet with no retransmittable data, and ensure it's not tracked.
  EXPECT_FALSE(sender_->OnPacketSent(clock_.Now(), bytes_in_flight_,
                                     packet_number_++, kDefaultTCPMSS,
                                     NO_RETRANSMITTABLE_DATA));

  // Send a data packet with retransmittable data, and ensure it is tracked.
  EXPECT_TRUE(sender_->OnPacketSent(clock_.Now(), bytes_in_flight_,
                                    packet_number_++, kDefaultTCPMSS,
                                    HAS_RETRANSMITTABLE_DATA));
}

TEST_F(TcpCubicBytesSenderTest, ConfigureMaxInitialWindow) {
  QuicConfig config;

  // Verify that kCOPT: kIW10 forces the congestion window to the default of 10.
  QuicTagVector options;
  options.push_back(kIW10);
  QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
  sender_->SetFromConfig(config, Perspective::IS_SERVER);
  EXPECT_EQ(10u * kDefaultTCPMSS, sender_->GetCongestionWindow());
}

TEST_F(TcpCubicBytesSenderTest, 2ConnectionCongestionAvoidanceAtEndOfRecovery) {
  sender_->SetNumEmulatedConnections(2);
  // Ack 10 packets in 5 acks to raise the CWND to 20.
  const int kNumberOfAcks = 5;
  for (int i = 0; i < kNumberOfAcks; ++i) {
    // Send our full send window.
    SendAvailableSendWindow();
    AckNPackets(2);
  }
  SendAvailableSendWindow();
  QuicByteCount expected_send_window =
      kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks);
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());

  LoseNPackets(1);

  // We should now have fallen out of slow start with a reduced window.
  expected_send_window = expected_send_window * sender_->GetRenoBeta();
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());

  // No congestion window growth should occur in recovery phase, i.e., until the
  // currently outstanding 20 packets are acked.
  for (int i = 0; i < 10; ++i) {
    // Send our full send window.
    SendAvailableSendWindow();
    EXPECT_TRUE(sender_->InRecovery());
    AckNPackets(2);
    EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
  }
  EXPECT_FALSE(sender_->InRecovery());

  // Out of recovery now. Congestion window should not grow for half an RTT.
  size_t packets_in_send_window = expected_send_window / kDefaultTCPMSS;
  SendAvailableSendWindow();
  AckNPackets(packets_in_send_window / 2 - 2);
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());

  // Next ack should increase congestion window by 1MSS.
  SendAvailableSendWindow();
  AckNPackets(2);
  expected_send_window += kDefaultTCPMSS;
  packets_in_send_window += 1;
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());

  // Congestion window should remain steady again for half an RTT.
  SendAvailableSendWindow();
  AckNPackets(packets_in_send_window / 2 - 1);
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());

  // Next ack should cause congestion window to grow by 1MSS.
  SendAvailableSendWindow();
  AckNPackets(2);
  expected_send_window += kDefaultTCPMSS;
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}

TEST_F(TcpCubicBytesSenderTest, 1ConnectionCongestionAvoidanceAtEndOfRecovery) {
  sender_->SetNumEmulatedConnections(1);
  // Ack 10 packets in 5 acks to raise the CWND to 20.
  const int kNumberOfAcks = 5;
  for (int i = 0; i < kNumberOfAcks; ++i) {
    // Send our full send window.
    SendAvailableSendWindow();
    AckNPackets(2);
  }
  SendAvailableSendWindow();
  QuicByteCount expected_send_window =
      kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks);
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());

  LoseNPackets(1);

  // We should now have fallen out of slow start with a reduced window.
  expected_send_window *= kRenoBeta;
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());

  // No congestion window growth should occur in recovery phase, i.e., until the
  // currently outstanding 20 packets are acked.
  for (int i = 0; i < 10; ++i) {
    // Send our full send window.
    SendAvailableSendWindow();
    EXPECT_TRUE(sender_->InRecovery());
    AckNPackets(2);
    EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
  }
  EXPECT_FALSE(sender_->InRecovery());

  // Out of recovery now. Congestion window should not grow during RTT.
  for (uint64 i = 0; i < expected_send_window / kDefaultTCPMSS - 2; i += 2) {
    // Send our full send window.
    SendAvailableSendWindow();
    AckNPackets(2);
    EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
  }

  // Next ack should cause congestion window to grow by 1MSS.
  SendAvailableSendWindow();
  AckNPackets(2);
  expected_send_window += kDefaultTCPMSS;
  EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}

TEST_F(TcpCubicBytesSenderTest, BandwidthResumption) {
  // Test that when provided with CachedNetworkParameters and opted in to the
  // bandwidth resumption experiment, that the TcpCubicSender sets initial CWND
  // appropriately.

  // Set some common values.
  CachedNetworkParameters cached_network_params;
  const QuicPacketCount kNumberOfPackets = 123;
  const int kBandwidthEstimateBytesPerSecond =
      kNumberOfPackets * kDefaultTCPMSS;
  cached_network_params.set_bandwidth_estimate_bytes_per_second(
      kBandwidthEstimateBytesPerSecond);
  cached_network_params.set_min_rtt_ms(1000);

  // Make sure that a bandwidth estimate results in a changed CWND.
  cached_network_params.set_timestamp(clock_.WallNow().ToUNIXSeconds() -
                                      (kNumSecondsPerHour - 1));
  sender_->ResumeConnectionState(cached_network_params, false);
  EXPECT_EQ(kNumberOfPackets * kDefaultTCPMSS, sender_->GetCongestionWindow());

  // Resumed CWND is limited to be in a sensible range.
  cached_network_params.set_bandwidth_estimate_bytes_per_second(
      (kMaxCongestionWindow + 1) * kDefaultTCPMSS);
  sender_->ResumeConnectionState(cached_network_params, false);
  EXPECT_EQ(kMaxCongestionWindow * kDefaultTCPMSS,
            sender_->GetCongestionWindow());

  cached_network_params.set_bandwidth_estimate_bytes_per_second(
      (kMinCongestionWindowForBandwidthResumption - 1) * kDefaultTCPMSS);
  sender_->ResumeConnectionState(cached_network_params, false);
  EXPECT_EQ(kMinCongestionWindowForBandwidthResumption * kDefaultTCPMSS,
            sender_->GetCongestionWindow());

  // Resume to the max value.
  cached_network_params.set_max_bandwidth_estimate_bytes_per_second(
      (kMinCongestionWindowForBandwidthResumption + 10) * kDefaultTCPMSS);
  sender_->ResumeConnectionState(cached_network_params, true);
  EXPECT_EQ((kMinCongestionWindowForBandwidthResumption + 10) * kDefaultTCPMSS,
            sender_->GetCongestionWindow());
}

TEST_F(TcpCubicBytesSenderTest, PaceBelowCWND) {
  QuicConfig config;

  // Verify that kCOPT: kMIN4 forces the min CWND to 1 packet, but allows up
  // to 4 to be sent.
  QuicTagVector options;
  options.push_back(kMIN4);
  QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
  sender_->SetFromConfig(config, Perspective::IS_SERVER);
  sender_->OnRetransmissionTimeout(true);
  EXPECT_EQ(kDefaultTCPMSS, sender_->GetCongestionWindow());
  EXPECT_TRUE(sender_->TimeUntilSend(QuicTime::Zero(), kDefaultTCPMSS,
                                     HAS_RETRANSMITTABLE_DATA).IsZero());
  EXPECT_TRUE(sender_->TimeUntilSend(QuicTime::Zero(), 2 * kDefaultTCPMSS,
                                     HAS_RETRANSMITTABLE_DATA).IsZero());
  EXPECT_TRUE(sender_->TimeUntilSend(QuicTime::Zero(), 3 * kDefaultTCPMSS,
                                     HAS_RETRANSMITTABLE_DATA).IsZero());
  EXPECT_FALSE(sender_->TimeUntilSend(QuicTime::Zero(), 4 * kDefaultTCPMSS,
                                      HAS_RETRANSMITTABLE_DATA).IsZero());
}

}  // namespace test
}  // namespace net