1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "net/quic/congestion_control/rtt_stats.h"
#include "net/quic/congestion_control/tcp_cubic_sender.h"
#include "net/quic/congestion_control/tcp_receiver.h"
#include "net/quic/quic_utils.h"
#include "net/quic/test_tools/mock_clock.h"
#include "testing/gtest/include/gtest/gtest.h"
using std::min;
namespace net {
namespace test {
const uint32 kDefaultWindowTCP = 10 * kDefaultTCPMSS;
// TODO(ianswett): Remove 10000 once b/10075719 is fixed.
const QuicTcpCongestionWindow kDefaultMaxCongestionWindowTCP = 10000;
class TcpCubicSenderPeer : public TcpCubicSender {
public:
TcpCubicSenderPeer(const QuicClock* clock,
bool reno,
QuicTcpCongestionWindow max_tcp_congestion_window)
: TcpCubicSender(
clock, &rtt_stats_, reno, max_tcp_congestion_window, &stats_) {
}
QuicTcpCongestionWindow congestion_window() {
return congestion_window_;
}
const HybridSlowStart& hybrid_slow_start() const {
return hybrid_slow_start_;
}
RttStats rtt_stats_;
QuicConnectionStats stats_;
using TcpCubicSender::AvailableSendWindow;
using TcpCubicSender::SendWindow;
};
class TcpCubicSenderTest : public ::testing::Test {
protected:
TcpCubicSenderTest()
: one_ms_(QuicTime::Delta::FromMilliseconds(1)),
sender_(new TcpCubicSenderPeer(&clock_, true,
kDefaultMaxCongestionWindowTCP)),
receiver_(new TcpReceiver()),
sequence_number_(1),
acked_sequence_number_(0) {
}
int SendAvailableSendWindow() {
// Send as long as TimeUntilSend returns Zero.
int packets_sent = 0;
bool can_send = sender_->TimeUntilSend(
clock_.Now(), HAS_RETRANSMITTABLE_DATA).IsZero();
while (can_send) {
sender_->OnPacketSent(clock_.Now(), sequence_number_++, kDefaultTCPMSS,
HAS_RETRANSMITTABLE_DATA);
++packets_sent;
can_send = sender_->TimeUntilSend(
clock_.Now(), HAS_RETRANSMITTABLE_DATA).IsZero();
}
return packets_sent;
}
void UpdateRtt(QuicTime::Delta rtt) {
sender_->rtt_stats_.UpdateRtt(rtt, QuicTime::Delta::Zero());
sender_->UpdateRtt(rtt);
}
// Normal is that TCP acks every other segment.
void AckNPackets(int n) {
for (int i = 0; i < n; ++i) {
++acked_sequence_number_;
UpdateRtt(QuicTime::Delta::FromMilliseconds(60));
sender_->OnPacketAcked(acked_sequence_number_, kDefaultTCPMSS);
}
clock_.AdvanceTime(one_ms_); // 1 millisecond.
}
void LoseNPackets(int n) {
for (int i = 0; i < n; ++i) {
++acked_sequence_number_;
sender_->OnPacketAbandoned(acked_sequence_number_, kDefaultTCPMSS);
sender_->OnPacketLost(acked_sequence_number_, clock_.Now());
}
}
const QuicTime::Delta one_ms_;
MockClock clock_;
scoped_ptr<TcpCubicSenderPeer> sender_;
scoped_ptr<TcpReceiver> receiver_;
QuicPacketSequenceNumber sequence_number_;
QuicPacketSequenceNumber acked_sequence_number_;
};
TEST_F(TcpCubicSenderTest, SimpleSender) {
QuicCongestionFeedbackFrame feedback;
// At startup make sure we are at the default.
EXPECT_EQ(kDefaultWindowTCP, sender_->AvailableSendWindow());
EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// And that window is un-affected.
EXPECT_EQ(kDefaultWindowTCP, sender_->AvailableSendWindow());
EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
// There is available window, so we should be able to send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Fill the send window with data, then verify that we can't send.
SendAvailableSendWindow();
EXPECT_FALSE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
}
TEST_F(TcpCubicSenderTest, ExponentialSlowStart) {
const int kNumberOfAcks = 20;
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
QuicByteCount bytes_to_send = sender_->SendWindow();
EXPECT_EQ(kDefaultWindowTCP + kDefaultTCPMSS * 2 * kNumberOfAcks,
bytes_to_send);
}
TEST_F(TcpCubicSenderTest, SlowStartAckTrain) {
// Make sure that we fall out of slow start when we send ACK train longer
// than half the RTT, in this test case 30ms, which is more than 30 calls to
// Ack2Packets in one round.
// Since we start at 10 packet first round will be 5 second round 10 etc
// Hence we should pass 30 at 65 = 5 + 10 + 20 + 30
const int kNumberOfAcks = 65;
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
QuicByteCount expected_send_window =
kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// We should now have fallen out of slow start.
// Testing Reno phase.
// We should need 140(65*2+10) ACK:ed packets before increasing window by
// one.
for (int i = 0; i < 69; ++i) {
SendAvailableSendWindow();
AckNPackets(2);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
SendAvailableSendWindow();
AckNPackets(2);
expected_send_window += kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Now RTO and ensure slow start gets reset.
EXPECT_TRUE(sender_->hybrid_slow_start().started());
sender_->OnRetransmissionTimeout(true);
EXPECT_FALSE(sender_->hybrid_slow_start().started());
}
TEST_F(TcpCubicSenderTest, SlowStartPacketLoss) {
// Make sure that we fall out of slow start when we encounter a packet loss.
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
const int kNumberOfAcks = 10;
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
SendAvailableSendWindow();
QuicByteCount expected_send_window = kDefaultWindowTCP +
(kDefaultTCPMSS * 2 * kNumberOfAcks);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
sender_->OnPacketLost(acked_sequence_number_ + 1, clock_.Now());
++acked_sequence_number_;
// Make sure that we can send right now due to limited transmit.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// We should now have fallen out of slow start.
// We expect window to be cut in half by Reno.
expected_send_window /= 2;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Testing Reno phase.
// We need to ack half of the pending packet before we can send again.
size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS;
AckNPackets(number_of_packets_in_window);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
EXPECT_EQ(0u, sender_->AvailableSendWindow());
// We need to ack every packet in the window before we exit recovery.
for (size_t i = 0; i < number_of_packets_in_window; ++i) {
AckNPackets(1);
SendAvailableSendWindow();
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
// We need to ack another window before we increase CWND by 1.
for (size_t i = 0; i < number_of_packets_in_window - 2; ++i) {
AckNPackets(1);
SendAvailableSendWindow();
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
AckNPackets(1);
expected_send_window += kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Now RTO and ensure slow start gets reset.
EXPECT_TRUE(sender_->hybrid_slow_start().started());
sender_->OnRetransmissionTimeout(true);
EXPECT_FALSE(sender_->hybrid_slow_start().started());
}
TEST_F(TcpCubicSenderTest, SlowStartPacketLossPRR) {
// Test based on the first example in RFC6937.
// Make sure that we fall out of slow start when we encounter a packet loss.
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Ack 10 packets in 5 acks to raise the CWND to 20, as in the example.
const int kNumberOfAcks = 5;
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
SendAvailableSendWindow();
QuicByteCount expected_send_window = kDefaultWindowTCP +
(kDefaultTCPMSS * 2 * kNumberOfAcks);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
LoseNPackets(1);
// We should now have fallen out of slow start.
// We expect window to be cut in half by Reno.
expected_send_window /= 2;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Send 1 packet to simulate limited transmit.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
EXPECT_EQ(1, SendAvailableSendWindow());
// Testing TCP proportional rate reduction.
// We should send one packet for every two received acks over the remaining
// 18 outstanding packets.
size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS;
// The number of packets before we exit recovery is the original CWND minus
// the packet that has been lost and the one which triggered the loss.
size_t remaining_packets_in_recovery = number_of_packets_in_window * 2 - 1;
for (size_t i = 0; i < remaining_packets_in_recovery - 1; i += 2) {
AckNPackets(2);
EXPECT_TRUE(sender_->TimeUntilSend(
clock_.Now(), HAS_RETRANSMITTABLE_DATA).IsZero());
EXPECT_EQ(0u, sender_->AvailableSendWindow());
EXPECT_EQ(1, SendAvailableSendWindow());
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
// If there is one more packet to ack before completing recovery, ack it.
if (remaining_packets_in_recovery % 2 == 1) {
AckNPackets(1);
}
// We need to ack another window before we increase CWND by 1.
for (size_t i = 0; i < number_of_packets_in_window - 1; ++i) {
AckNPackets(1);
EXPECT_EQ(1, SendAvailableSendWindow());
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
AckNPackets(1);
expected_send_window += kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, SlowStartBurstPacketLossPRR) {
// Test based on the second example in RFC6937, though we also implement
// forward acknowledgements, so the first two incoming acks will trigger
// PRR immediately.
// Make sure that we fall out of slow start when we encounter a packet loss.
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Ack 10 packets in 5 acks to raise the CWND to 20, as in the example.
const int kNumberOfAcks = 5;
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
SendAvailableSendWindow();
QuicByteCount expected_send_window = kDefaultWindowTCP +
(kDefaultTCPMSS * 2 * kNumberOfAcks);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Ack a packet with a 15 packet gap, losing 13 of them due to FACK.
sender_->OnPacketAcked(acked_sequence_number_ + 15, kDefaultTCPMSS);
LoseNPackets(13);
// We should now have fallen out of slow start.
// We expect window to be cut in half by Reno.
expected_send_window /= 2;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Only 2 packets should be allowed to be sent, per PRR-SSRB
EXPECT_EQ(2, SendAvailableSendWindow());
// Ack the next packet, which triggers another loss.
sender_->OnPacketAcked(acked_sequence_number_ + 4, kDefaultTCPMSS);
LoseNPackets(1);
// Send 2 packets to simulate PRR-SSRB.
EXPECT_EQ(2, SendAvailableSendWindow());
// Ack the next packet, which triggers another loss.
sender_->OnPacketAcked(acked_sequence_number_ + 4, kDefaultTCPMSS);
LoseNPackets(1);
// Send 2 packets to simulate PRR-SSRB.
EXPECT_EQ(2, SendAvailableSendWindow());
AckNPackets(1);
EXPECT_EQ(2, SendAvailableSendWindow());
AckNPackets(1);
EXPECT_EQ(2, SendAvailableSendWindow());
// The window should not have changed.
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Exit recovery and return to sending at the new rate.
for (int i = 0; i < kNumberOfAcks; ++i) {
AckNPackets(1);
EXPECT_EQ(1, SendAvailableSendWindow());
}
}
TEST_F(TcpCubicSenderTest, RTOCongestionWindow) {
EXPECT_EQ(kDefaultWindowTCP, sender_->SendWindow());
// Expect the window to decrease to the minimum once the RTO fires.
sender_->OnRetransmissionTimeout(true);
EXPECT_EQ(2 * kDefaultTCPMSS, sender_->SendWindow());
}
TEST_F(TcpCubicSenderTest, RTOCongestionWindowNoRetransmission) {
EXPECT_EQ(kDefaultWindowTCP, sender_->SendWindow());
// Expect the window to remain unchanged if the RTO fires but no
// packets are retransmitted.
sender_->OnRetransmissionTimeout(false);
EXPECT_EQ(kDefaultWindowTCP, sender_->SendWindow());
}
TEST_F(TcpCubicSenderTest, RetransmissionDelay) {
const int64 kRttMs = 10;
const int64 kDeviationMs = 3;
EXPECT_EQ(QuicTime::Delta::Zero(), sender_->RetransmissionDelay());
UpdateRtt(QuicTime::Delta::FromMilliseconds(kRttMs));
// Initial value is to set the median deviation to half of the initial
// rtt, the median in then multiplied by a factor of 4 and finally the
// smoothed rtt is added which is the initial rtt.
QuicTime::Delta expected_delay =
QuicTime::Delta::FromMilliseconds(kRttMs + kRttMs / 2 * 4);
EXPECT_EQ(expected_delay, sender_->RetransmissionDelay());
for (int i = 0; i < 100; ++i) {
// Run to make sure that we converge.
UpdateRtt(QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs));
UpdateRtt(QuicTime::Delta::FromMilliseconds(kRttMs - kDeviationMs));
}
expected_delay = QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs * 4);
EXPECT_NEAR(kRttMs, sender_->rtt_stats_.SmoothedRtt().ToMilliseconds(), 1);
EXPECT_NEAR(expected_delay.ToMilliseconds(),
sender_->RetransmissionDelay().ToMilliseconds(),
1);
EXPECT_EQ(static_cast<int64>(
sender_->GetCongestionWindow() * kNumMicrosPerSecond /
sender_->rtt_stats_.SmoothedRtt().ToMicroseconds()),
sender_->BandwidthEstimate().ToBytesPerSecond());
}
TEST_F(TcpCubicSenderTest, SlowStartMaxSendWindow) {
const QuicTcpCongestionWindow kMaxCongestionWindowTCP = 50;
const int kNumberOfAcks = 100;
sender_.reset(
new TcpCubicSenderPeer(&clock_, false, kMaxCongestionWindowTCP));
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
QuicByteCount expected_send_window =
kMaxCongestionWindowTCP * kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, TcpRenoMaxCongestionWindow) {
const QuicTcpCongestionWindow kMaxCongestionWindowTCP = 50;
const int kNumberOfAcks = 1000;
sender_.reset(
new TcpCubicSenderPeer(&clock_, true, kMaxCongestionWindowTCP));
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
SendAvailableSendWindow();
AckNPackets(2);
// Make sure we fall out of slow start.
sender_->OnPacketLost(acked_sequence_number_ + 1, clock_.Now());
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
QuicByteCount expected_send_window =
kMaxCongestionWindowTCP * kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, TcpCubicMaxCongestionWindow) {
const QuicTcpCongestionWindow kMaxCongestionWindowTCP = 50;
// Set to 10000 to compensate for small cubic alpha.
const int kNumberOfAcks = 10000;
sender_.reset(
new TcpCubicSenderPeer(&clock_, false, kMaxCongestionWindowTCP));
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
SendAvailableSendWindow();
AckNPackets(2);
// Make sure we fall out of slow start.
sender_->OnPacketLost(acked_sequence_number_ + 1, clock_.Now());
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
QuicByteCount expected_send_window =
kMaxCongestionWindowTCP * kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, MultipleLossesInOneWindow) {
SendAvailableSendWindow();
const QuicByteCount initial_window = sender_->GetCongestionWindow();
sender_->OnPacketLost(acked_sequence_number_ + 1, clock_.Now());
const QuicByteCount post_loss_window = sender_->GetCongestionWindow();
EXPECT_GT(initial_window, post_loss_window);
sender_->OnPacketLost(acked_sequence_number_ + 3, clock_.Now());
EXPECT_EQ(post_loss_window, sender_->GetCongestionWindow());
sender_->OnPacketLost(sequence_number_ - 1, clock_.Now());
EXPECT_EQ(post_loss_window, sender_->GetCongestionWindow());
// Lose a later packet and ensure the window decreases.
sender_->OnPacketLost(sequence_number_, clock_.Now());
EXPECT_GT(post_loss_window, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, SendWindowNotAffectedByAcks) {
QuicByteCount send_window = sender_->AvailableSendWindow();
// Send a packet with no retransmittable data, and ensure that the congestion
// window doesn't change.
QuicByteCount bytes_in_packet = min(kDefaultTCPMSS, send_window);
sender_->OnPacketSent(clock_.Now(), sequence_number_++, bytes_in_packet,
NO_RETRANSMITTABLE_DATA);
EXPECT_EQ(send_window, sender_->AvailableSendWindow());
// Send a data packet with retransmittable data, and ensure that the
// congestion window has shrunk.
sender_->OnPacketSent(clock_.Now(), sequence_number_++, bytes_in_packet,
HAS_RETRANSMITTABLE_DATA);
EXPECT_GT(send_window, sender_->AvailableSendWindow());
}
TEST_F(TcpCubicSenderTest, ConfigureMaxInitialWindow) {
QuicTcpCongestionWindow congestion_window = sender_->congestion_window();
QuicConfig config;
config.set_server_initial_congestion_window(2 * congestion_window,
2 * congestion_window);
EXPECT_EQ(2 * congestion_window, config.server_initial_congestion_window());
sender_->SetFromConfig(config, true);
EXPECT_EQ(2 * congestion_window, sender_->congestion_window());
}
TEST_F(TcpCubicSenderTest, CongestionAvoidanceAtEndOfRecovery) {
// Make sure that we fall out of slow start when we encounter a packet loss.
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Ack 10 packets in 5 acks to raise the CWND to 20.
const int kNumberOfAcks = 5;
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
SendAvailableSendWindow();
QuicByteCount expected_send_window = kDefaultWindowTCP +
(kDefaultTCPMSS * 2 * kNumberOfAcks);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
LoseNPackets(1);
// We should now have fallen out of slow start, and window should be cut in
// half by Reno. New cwnd should be 10.
expected_send_window /= 2;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// No congestion window growth should occur in recovery phase, i.e.,
// until the currently outstanding 20 packets are acked.
for (int i = 0; i < 10; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
// Out of recovery now. Congestion window should not grow during RTT.
for (int i = 0; i < 4; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
// Next ack should cause congestion window to grow by 1MSS.
AckNPackets(2);
expected_send_window += kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
} // namespace test
} // namespace net
|