summaryrefslogtreecommitdiffstats
path: root/net/quic/quic_data_writer.cc
blob: 70b0fdaed31f8e5abf7d2250a4418052e3fea390 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/quic/quic_data_writer.h"

#include <algorithm>
#include <limits>
#include <string>

#include "base/basictypes.h"
#include "base/logging.h"

using base::StringPiece;
using std::numeric_limits;

namespace net {

QuicDataWriter::QuicDataWriter(size_t size)
    : buffer_(new char[size]),
      capacity_(size),
      length_(0) {
}

QuicDataWriter::~QuicDataWriter() {
  delete[] buffer_;
}

char* QuicDataWriter::take() {
  char* rv = buffer_;
  buffer_ = NULL;
  capacity_ = 0;
  length_ = 0;
  return rv;
}

bool QuicDataWriter::WriteUInt8(uint8 value) {
  return WriteBytes(&value, sizeof(value));
}

bool QuicDataWriter::WriteUInt16(uint16 value) {
  return WriteBytes(&value, sizeof(value));
}

bool QuicDataWriter::WriteUInt32(uint32 value) {
  return WriteBytes(&value, sizeof(value));
}

bool QuicDataWriter::WriteUInt48(uint64 value) {
  uint32 hi = value >> 32;
  uint32 lo = value & GG_UINT64_C(0x00000000FFFFFFFF);
  return WriteUInt32(lo) && WriteUInt16(hi);
}

bool QuicDataWriter::WriteUInt64(uint64 value) {
  return WriteBytes(&value, sizeof(value));
}

bool QuicDataWriter::WriteUFloat16(uint64 value) {
  uint16 result;
  if (value < (GG_UINT64_C(1) << kUFloat16MantissaEffectiveBits)) {
    // Fast path: either the value is denormalized, or has exponent zero.
    // Both cases are represented by the value itself.
    result = value;
  } else if (value >= kUFloat16MaxValue) {
    // Value is out of range; clamp it to the maximum representable.
    result = numeric_limits<uint16>::max();
  } else {
    // The highest bit is between position 13 and 42 (zero-based), which
    // corresponds to exponent 1-30. In the output, mantissa is from 0 to 10,
    // hidden bit is 11 and exponent is 11 to 15. Shift the highest bit to 11
    // and count the shifts.
    uint16 exponent = 0;
    for (uint16 offset = 16; offset > 0; offset /= 2) {
      // Right-shift the value until the highest bit is in position 11.
      // For offset of 16, 8, 4, 2 and 1 (binary search over 1-30),
      // shift if the bit is at or above 11 + offset.
      if (value >= (GG_UINT64_C(1) << (kUFloat16MantissaBits + offset))) {
        exponent += offset;
        value >>= offset;
      }
    }

    DCHECK_GE(exponent, 1);
    DCHECK_LE(exponent, kUFloat16MaxExponent);
    DCHECK_GE(value, GG_UINT64_C(1) << kUFloat16MantissaBits);
    DCHECK_LT(value, GG_UINT64_C(1) << kUFloat16MantissaEffectiveBits);

    // Hidden bit (position 11) is set. We should remove it and increment the
    // exponent. Equivalently, we just add it to the exponent.
    // This hides the bit.
    result = value + (exponent << kUFloat16MantissaBits);
  }

  return WriteBytes(&result, sizeof(result));
}

bool QuicDataWriter::WriteStringPiece16(StringPiece val) {
  if (val.length() > numeric_limits<uint16>::max()) {
    return false;
  }
  if (!WriteUInt16(val.size())) {
    return false;
  }
  return WriteBytes(val.data(), val.size());
}

bool QuicDataWriter::WriteIOVector(const IOVector& data) {
  char *dest = BeginWrite(data.TotalBufferSize());
  if (!dest) {
    return false;
  }
  for (size_t i = 0; i < data.Size(); ++i) {
    WriteBytes(data.iovec()[i].iov_base,  data.iovec()[i].iov_len);
  }

  return true;
}

char* QuicDataWriter::BeginWrite(size_t length) {
  if (length_ > capacity_) {
    return NULL;
  }

  if (capacity_ - length_ < length) {
    return NULL;
  }

#ifdef ARCH_CPU_64_BITS
  DCHECK_LE(length, numeric_limits<uint32>::max());
#endif

  return buffer_ + length_;
}

bool QuicDataWriter::WriteBytes(const void* data, size_t data_len) {
  char* dest = BeginWrite(data_len);
  if (!dest) {
    return false;
  }

  memcpy(dest, data, data_len);

  length_ += data_len;
  return true;
}

bool QuicDataWriter::WriteRepeatedByte(uint8 byte, size_t count) {
  char* dest = BeginWrite(count);
  if (!dest) {
    return false;
  }

  memset(dest, byte, count);

  length_ += count;
  return true;
}

void QuicDataWriter::WritePadding() {
  DCHECK_LE(length_, capacity_);
  if (length_ > capacity_) {
    return;
  }
  memset(buffer_ + length_, 0x00, capacity_ - length_);
  length_ = capacity_;
}

bool QuicDataWriter::WriteUInt8ToOffset(uint8 value, size_t offset) {
  if (offset >= capacity_) {
    LOG(DFATAL) << "offset: " << offset << " >= capacity: " << capacity_;
    return false;
  }
  size_t latched_length = length_;
  length_ = offset;
  bool success = WriteUInt8(value);
  DCHECK_LE(length_, latched_length);
  length_ = latched_length;
  return success;
}

bool QuicDataWriter::WriteUInt32ToOffset(uint32 value, size_t offset) {
  DCHECK_LT(offset, capacity_);
  size_t latched_length = length_;
  length_ = offset;
  bool success = WriteUInt32(value);
  DCHECK_LE(length_, latched_length);
  length_ = latched_length;
  return success;
}

bool QuicDataWriter::WriteUInt48ToOffset(uint64 value, size_t offset) {
  DCHECK_LT(offset, capacity_);
  size_t latched_length = length_;
  length_ = offset;
  bool success = WriteUInt48(value);
  DCHECK_LE(length_, latched_length);
  length_ = latched_length;
  return success;
}

}  // namespace net