1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_data_writer.h"
#include <stdint.h>
#include "base/memory/scoped_ptr.h"
#include "net/quic/quic_data_reader.h"
#include "net/test/gtest_util.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace net {
namespace test {
namespace {
TEST(QuicDataWriterTest, SanityCheckUFloat16Consts) {
// Check the arithmetic on the constants - otherwise the values below make
// no sense.
EXPECT_EQ(30, kUFloat16MaxExponent);
EXPECT_EQ(11, kUFloat16MantissaBits);
EXPECT_EQ(12, kUFloat16MantissaEffectiveBits);
EXPECT_EQ(UINT64_C(0x3FFC0000000), kUFloat16MaxValue);
}
TEST(QuicDataWriterTest, WriteUFloat16) {
struct TestCase {
uint64_t decoded;
uint16_t encoded;
};
TestCase test_cases[] = {
// Small numbers represent themselves.
{0, 0},
{1, 1},
{2, 2},
{3, 3},
{4, 4},
{5, 5},
{6, 6},
{7, 7},
{15, 15},
{31, 31},
{42, 42},
{123, 123},
{1234, 1234},
// Check transition through 2^11.
{2046, 2046},
{2047, 2047},
{2048, 2048},
{2049, 2049},
// Running out of mantissa at 2^12.
{4094, 4094},
{4095, 4095},
{4096, 4096},
{4097, 4096},
{4098, 4097},
{4099, 4097},
{4100, 4098},
{4101, 4098},
// Check transition through 2^13.
{8190, 6143},
{8191, 6143},
{8192, 6144},
{8193, 6144},
{8194, 6144},
{8195, 6144},
{8196, 6145},
{8197, 6145},
// Half-way through the exponents.
{0x7FF8000, 0x87FF},
{0x7FFFFFF, 0x87FF},
{0x8000000, 0x8800},
{0xFFF0000, 0x8FFF},
{0xFFFFFFF, 0x8FFF},
{0x10000000, 0x9000},
// Transition into the largest exponent.
{0x1FFFFFFFFFE, 0xF7FF},
{0x1FFFFFFFFFF, 0xF7FF},
{0x20000000000, 0xF800},
{0x20000000001, 0xF800},
{0x2003FFFFFFE, 0xF800},
{0x2003FFFFFFF, 0xF800},
{0x20040000000, 0xF801},
{0x20040000001, 0xF801},
// Transition into the max value and clamping.
{0x3FF80000000, 0xFFFE},
{0x3FFBFFFFFFF, 0xFFFE},
{0x3FFC0000000, 0xFFFF},
{0x3FFC0000001, 0xFFFF},
{0x3FFFFFFFFFF, 0xFFFF},
{0x40000000000, 0xFFFF},
{0xFFFFFFFFFFFFFFFF, 0xFFFF},
};
int num_test_cases = sizeof(test_cases) / sizeof(test_cases[0]);
for (int i = 0; i < num_test_cases; ++i) {
char buffer[2];
QuicDataWriter writer(2, buffer);
EXPECT_TRUE(writer.WriteUFloat16(test_cases[i].decoded));
EXPECT_EQ(test_cases[i].encoded,
*reinterpret_cast<uint16_t*>(writer.data()));
}
}
TEST(QuicDataWriterTest, ReadUFloat16) {
struct TestCase {
uint64_t decoded;
uint16_t encoded;
};
TestCase test_cases[] = {
// There are fewer decoding test cases because encoding truncates, and
// decoding returns the smallest expansion.
// Small numbers represent themselves.
{0, 0},
{1, 1},
{2, 2},
{3, 3},
{4, 4},
{5, 5},
{6, 6},
{7, 7},
{15, 15},
{31, 31},
{42, 42},
{123, 123},
{1234, 1234},
// Check transition through 2^11.
{2046, 2046},
{2047, 2047},
{2048, 2048},
{2049, 2049},
// Running out of mantissa at 2^12.
{4094, 4094},
{4095, 4095},
{4096, 4096},
{4098, 4097},
{4100, 4098},
// Check transition through 2^13.
{8190, 6143},
{8192, 6144},
{8196, 6145},
// Half-way through the exponents.
{0x7FF8000, 0x87FF},
{0x8000000, 0x8800},
{0xFFF0000, 0x8FFF},
{0x10000000, 0x9000},
// Transition into the largest exponent.
{0x1FFE0000000, 0xF7FF},
{0x20000000000, 0xF800},
{0x20040000000, 0xF801},
// Transition into the max value.
{0x3FF80000000, 0xFFFE},
{0x3FFC0000000, 0xFFFF},
};
int num_test_cases = sizeof(test_cases) / sizeof(test_cases[0]);
for (int i = 0; i < num_test_cases; ++i) {
QuicDataReader reader(reinterpret_cast<char*>(&test_cases[i].encoded), 2);
uint64_t value;
EXPECT_TRUE(reader.ReadUFloat16(&value));
EXPECT_EQ(test_cases[i].decoded, value);
}
}
TEST(QuicDataWriterTest, RoundTripUFloat16) {
// Just test all 16-bit encoded values. 0 and max already tested above.
uint64_t previous_value = 0;
for (uint16_t i = 1; i < 0xFFFF; ++i) {
// Read the two bytes.
QuicDataReader reader(reinterpret_cast<char*>(&i), 2);
uint64_t value;
// All values must be decodable.
EXPECT_TRUE(reader.ReadUFloat16(&value));
// Check that small numbers represent themselves
if (i < 4097)
EXPECT_EQ(i, value);
// Check there's monotonic growth.
EXPECT_LT(previous_value, value);
// Check that precision is within 0.5% away from the denormals.
if (i > 2000)
EXPECT_GT(previous_value * 1005, value * 1000);
// Check we're always within the promised range.
EXPECT_LT(value, UINT64_C(0x3FFC0000000));
previous_value = value;
char buffer[6];
QuicDataWriter writer(6, buffer);
EXPECT_TRUE(writer.WriteUFloat16(value - 1));
EXPECT_TRUE(writer.WriteUFloat16(value));
EXPECT_TRUE(writer.WriteUFloat16(value + 1));
// Check minimal decoding (previous decoding has previous encoding).
EXPECT_EQ(i - 1, *reinterpret_cast<uint16_t*>(writer.data()));
// Check roundtrip.
EXPECT_EQ(i, *reinterpret_cast<uint16_t*>(writer.data() + 2));
// Check next decoding.
EXPECT_EQ(i < 4096 ? i + 1 : i,
*reinterpret_cast<uint16_t*>(writer.data() + 4));
}
}
} // namespace
} // namespace test
} // namespace net
|