1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_fec_group.h"
#include <limits>
#include "base/logging.h"
#include "base/stl_util.h"
using base::StringPiece;
using std::numeric_limits;
using std::set;
namespace net {
QuicFecGroup::QuicFecGroup(QuicPacketNumber fec_group_number)
: QuicFecGroupInterface(),
min_protected_packet_(fec_group_number),
max_protected_packet_(kInvalidPacketNumber),
payload_parity_len_(0),
effective_encryption_level_(NUM_ENCRYPTION_LEVELS) {}
QuicFecGroup::~QuicFecGroup() {}
bool QuicFecGroup::Update(EncryptionLevel encryption_level,
const QuicPacketHeader& header,
StringPiece decrypted_payload) {
DCHECK_EQ(min_protected_packet_, header.fec_group);
DCHECK_NE(kInvalidPacketNumber, header.packet_number);
if (ContainsKey(received_packets_, header.packet_number)) {
return false;
}
if (header.packet_number < min_protected_packet_ ||
(has_received_fec_packet() &&
header.packet_number > max_protected_packet_)) {
DLOG(ERROR) << "FEC group does not cover received packet: "
<< header.packet_number;
return false;
}
if (!UpdateParity(decrypted_payload)) {
return false;
}
received_packets_.insert(header.packet_number);
if (encryption_level < effective_encryption_level_) {
effective_encryption_level_ = encryption_level;
}
return true;
}
bool QuicFecGroup::UpdateFec(EncryptionLevel encryption_level,
const QuicPacketHeader& header,
StringPiece redundancy) {
DCHECK_EQ(min_protected_packet_, header.fec_group);
DCHECK_NE(kInvalidPacketNumber, header.packet_number);
if (has_received_fec_packet()) {
return false;
}
for (QuicPacketNumber packet : received_packets_) {
if (packet >= header.packet_number) {
DLOG(ERROR) << "FEC group does not cover received packet: " << packet;
return false;
}
}
if (!UpdateParity(redundancy)) {
return false;
}
max_protected_packet_ = header.packet_number - 1;
if (encryption_level < effective_encryption_level_) {
effective_encryption_level_ = encryption_level;
}
return true;
}
bool QuicFecGroup::CanRevive() const {
// We can revive if we're missing exactly 1 packet.
return NumMissingPackets() == 1;
}
bool QuicFecGroup::IsFinished() const {
// We are finished if we are not missing any packets.
return NumMissingPackets() == 0;
}
size_t QuicFecGroup::Revive(QuicPacketHeader* header,
char* decrypted_payload,
size_t decrypted_payload_len) {
if (!CanRevive()) {
return 0;
}
// Identify the packet number to be resurrected.
QuicPacketNumber missing = kInvalidPacketNumber;
for (QuicPacketNumber i = min_protected_packet_; i <= max_protected_packet_;
++i) {
// Is this packet missing?
if (received_packets_.count(i) == 0) {
missing = i;
break;
}
}
DCHECK_NE(kInvalidPacketNumber, missing);
DCHECK_LE(payload_parity_len_, decrypted_payload_len);
if (payload_parity_len_ > decrypted_payload_len) {
return 0;
}
for (size_t i = 0; i < payload_parity_len_; ++i) {
decrypted_payload[i] = payload_parity_[i];
}
header->packet_number = missing;
header->entropy_flag = false; // Unknown entropy.
received_packets_.insert(missing);
return payload_parity_len_;
}
bool QuicFecGroup::IsWaitingForPacketBefore(QuicPacketNumber num) const {
// Entire range is larger than the threshold.
if (min_protected_packet_ >= num) {
return false;
}
// Entire range is smaller than the threshold.
if (received_packets_.size() > 0 ? *received_packets_.rbegin() + 1 < num
: min_protected_packet_ < num) {
return true;
}
// Range spans the threshold so look for a missing packet below the threshold.
QuicPacketNumber target = min_protected_packet_;
for (QuicPacketNumber packet : received_packets_) {
if (target++ != packet) {
return true;
}
if (target >= num) {
return false;
}
}
// No missing packets below the threshold.
return false;
}
bool QuicFecGroup::UpdateParity(StringPiece payload) {
DCHECK_GE(kMaxPacketSize, payload.size());
if (payload.size() > kMaxPacketSize) {
DLOG(ERROR) << "Illegal payload size: " << payload.size();
return false;
}
if (payload_parity_len_ < payload.size()) {
payload_parity_len_ = payload.size();
}
if (received_packets_.empty() && !has_received_fec_packet()) {
// Initialize the parity to the value of this payload
memcpy(payload_parity_, payload.data(), payload.size());
if (payload.size() < kMaxPacketSize) {
// TODO(rch): expand as needed.
memset(payload_parity_ + payload.size(), 0,
kMaxPacketSize - payload.size());
}
return true;
}
// Update the parity by XORing in the data (padding with 0s if necessary).
XorBuffers(payload.data(), payload.size(), payload_parity_);
return true;
}
QuicPacketCount QuicFecGroup::NumMissingPackets() const {
if (!has_received_fec_packet()) {
return numeric_limits<QuicPacketCount>::max();
}
return static_cast<QuicPacketCount>(
(max_protected_packet_ - min_protected_packet_ + 1) -
received_packets_.size());
}
const StringPiece QuicFecGroup::PayloadParity() const {
return StringPiece(payload_parity_, payload_parity_len_);
}
QuicPacketCount QuicFecGroup::NumReceivedPackets() const {
return received_packets_.size();
}
EncryptionLevel QuicFecGroup::EffectiveEncryptionLevel() const {
return effective_encryption_level_;
}
QuicFecGroupNumber QuicFecGroup::FecGroupNumber() const {
return min_protected_packet_;
}
} // namespace net
|