1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_stream_sequencer.h"
#include <algorithm>
#include <limits>
#include <utility>
#include "base/logging.h"
#include "net/quic/reliable_quic_stream.h"
using std::min;
using std::numeric_limits;
using std::string;
namespace net {
QuicStreamSequencer::FrameData::FrameData(QuicStreamOffset offset,
string segment)
: offset(offset), segment(segment) {}
QuicStreamSequencer::QuicStreamSequencer(ReliableQuicStream* quic_stream)
: stream_(quic_stream),
num_bytes_consumed_(0),
close_offset_(numeric_limits<QuicStreamOffset>::max()),
blocked_(false),
num_bytes_buffered_(0),
num_frames_received_(0),
num_duplicate_frames_received_(0),
num_early_frames_received_(0) {
}
QuicStreamSequencer::~QuicStreamSequencer() {
}
void QuicStreamSequencer::OnStreamFrame(const QuicStreamFrame& frame) {
++num_frames_received_;
FrameList::iterator insertion_point = FindInsertionPoint(frame);
if (IsDuplicate(frame, insertion_point)) {
++num_duplicate_frames_received_;
// Silently ignore duplicates.
return;
}
if (FrameOverlapsBufferedData(frame, insertion_point)) {
stream_->CloseConnectionWithDetails(
QUIC_INVALID_STREAM_FRAME, "Stream frame overlaps with buffered data.");
return;
}
const QuicStreamOffset byte_offset = frame.offset;
const size_t data_len = frame.data.length();
if (data_len == 0 && !frame.fin) {
// Stream frames must have data or a fin flag.
stream_->CloseConnectionWithDetails(QUIC_INVALID_STREAM_FRAME,
"Empty stream frame without FIN set.");
return;
}
if (frame.fin) {
CloseStreamAtOffset(frame.offset + data_len);
if (data_len == 0) {
return;
}
}
if (byte_offset > num_bytes_consumed_) {
++num_early_frames_received_;
}
DVLOG(1) << "Buffering stream data at offset " << byte_offset;
// Inserting an empty string and then copying to avoid the extra copy.
insertion_point =
buffered_frames_.insert(insertion_point, FrameData(byte_offset, ""));
frame.data.CopyToString(&insertion_point->segment);
num_bytes_buffered_ += data_len;
if (blocked_) {
return;
}
if (byte_offset == num_bytes_consumed_) {
stream_->OnDataAvailable();
}
}
void QuicStreamSequencer::CloseStreamAtOffset(QuicStreamOffset offset) {
const QuicStreamOffset kMaxOffset = numeric_limits<QuicStreamOffset>::max();
// If there is a scheduled close, the new offset should match it.
if (close_offset_ != kMaxOffset && offset != close_offset_) {
stream_->Reset(QUIC_MULTIPLE_TERMINATION_OFFSETS);
return;
}
close_offset_ = offset;
MaybeCloseStream();
}
bool QuicStreamSequencer::MaybeCloseStream() {
if (!blocked_ && IsClosed()) {
DVLOG(1) << "Passing up termination, as we've processed "
<< num_bytes_consumed_ << " of " << close_offset_
<< " bytes.";
// This will cause the stream to consume the fin.
// Technically it's an error if num_bytes_consumed isn't exactly
// equal, but error handling seems silly at this point.
stream_->OnDataAvailable();
buffered_frames_.clear();
num_bytes_buffered_ = 0;
return true;
}
return false;
}
int QuicStreamSequencer::GetReadableRegions(iovec* iov, size_t iov_len) const {
DCHECK(!blocked_);
FrameList::const_iterator it = buffered_frames_.begin();
size_t index = 0;
QuicStreamOffset offset = num_bytes_consumed_;
while (it != buffered_frames_.end() && index < iov_len) {
if (it->offset != offset) {
return index;
}
iov[index].iov_base =
static_cast<void*>(const_cast<char*>(it->segment.data()));
iov[index].iov_len = it->segment.size();
offset += it->segment.size();
++index;
++it;
}
return index;
}
int QuicStreamSequencer::Readv(const struct iovec* iov, size_t iov_len) {
DCHECK(!blocked_);
FrameList::iterator it = buffered_frames_.begin();
size_t iov_index = 0;
size_t iov_offset = 0;
size_t frame_offset = 0;
QuicStreamOffset initial_bytes_consumed = num_bytes_consumed_;
while (iov_index < iov_len && it != buffered_frames_.end() &&
it->offset == num_bytes_consumed_) {
int bytes_to_read = min(iov[iov_index].iov_len - iov_offset,
it->segment.size() - frame_offset);
char* iov_ptr = static_cast<char*>(iov[iov_index].iov_base) + iov_offset;
memcpy(iov_ptr, it->segment.data() + frame_offset, bytes_to_read);
frame_offset += bytes_to_read;
iov_offset += bytes_to_read;
if (iov[iov_index].iov_len == iov_offset) {
// We've filled this buffer.
iov_offset = 0;
++iov_index;
}
if (it->segment.size() == frame_offset) {
// We've copied this whole frame
RecordBytesConsumed(it->segment.size());
buffered_frames_.erase(it);
it = buffered_frames_.begin();
frame_offset = 0;
}
}
// Done copying. If there is a partial frame, update it.
if (frame_offset != 0) {
buffered_frames_.push_front(
FrameData(it->offset + frame_offset, it->segment.substr(frame_offset)));
buffered_frames_.erase(it);
RecordBytesConsumed(frame_offset);
}
return static_cast<int>(num_bytes_consumed_ - initial_bytes_consumed);
}
bool QuicStreamSequencer::HasBytesToRead() const {
return !buffered_frames_.empty() &&
buffered_frames_.begin()->offset == num_bytes_consumed_;
}
bool QuicStreamSequencer::IsClosed() const {
return num_bytes_consumed_ >= close_offset_;
}
QuicStreamSequencer::FrameList::iterator
QuicStreamSequencer::FindInsertionPoint(const QuicStreamFrame& frame) {
if (buffered_frames_.empty()) {
return buffered_frames_.begin();
}
// If it's after all buffered_frames, return the end.
if (frame.offset >= (buffered_frames_.rbegin()->offset +
buffered_frames_.rbegin()->segment.length())) {
return buffered_frames_.end();
}
FrameList::iterator iter = buffered_frames_.begin();
// Only advance the iterator if the data begins after the already received
// frame. If the new frame overlaps with an existing frame, the iterator will
// still point to the frame it overlaps with.
while (iter != buffered_frames_.end() &&
frame.offset >= iter->offset + iter->segment.length()) {
++iter;
}
return iter;
}
bool QuicStreamSequencer::FrameOverlapsBufferedData(
const QuicStreamFrame& frame,
FrameList::const_iterator insertion_point) const {
if (buffered_frames_.empty() || insertion_point == buffered_frames_.end()) {
return false;
}
// If there is a buffered frame with a higher starting offset, then check to
// see if the new frame overlaps the beginning of the higher frame.
if (frame.offset < insertion_point->offset &&
frame.offset + frame.data.length() > insertion_point->offset) {
DVLOG(1) << "New frame overlaps next frame: " << frame.offset << " + "
<< frame.data.size() << " > " << insertion_point->offset;
return true;
}
// If there is a buffered frame with a lower starting offset, then check to
// see if the buffered frame runs into the new frame.
if (frame.offset >= insertion_point->offset &&
frame.offset <
insertion_point->offset + insertion_point->segment.length()) {
DVLOG(1) << "Preceeding frame overlaps new frame: "
<< insertion_point->offset << " + "
<< insertion_point->segment.length() << " > " << frame.offset;
return true;
}
return false;
}
void QuicStreamSequencer::MarkConsumed(size_t num_bytes_consumed) {
DCHECK(!blocked_);
size_t end_offset = num_bytes_consumed_ + num_bytes_consumed;
while (!buffered_frames_.empty() && end_offset != num_bytes_consumed_) {
FrameList::iterator it = buffered_frames_.begin();
if (it->offset != num_bytes_consumed_) {
LOG(DFATAL) << "Invalid argument to MarkConsumed. "
<< " num_bytes_consumed_: " << num_bytes_consumed_
<< " end_offset: " << end_offset << " offset: " << it->offset
<< " length: " << it->segment.length();
stream_->Reset(QUIC_ERROR_PROCESSING_STREAM);
return;
}
if (it->offset + it->segment.length() <= end_offset) {
RecordBytesConsumed(it->segment.length());
// This chunk is entirely consumed.
buffered_frames_.erase(it);
continue;
}
// Partially consume this frame.
size_t delta = end_offset - it->offset;
RecordBytesConsumed(delta);
string new_data = it->segment.substr(delta);
buffered_frames_.erase(it);
buffered_frames_.push_front(FrameData(num_bytes_consumed_, new_data));
break;
}
}
bool QuicStreamSequencer::IsDuplicate(
const QuicStreamFrame& frame,
FrameList::const_iterator insertion_point) const {
// A frame is duplicate if the frame offset is smaller than the bytes consumed
// or identical to an already received frame.
return frame.offset < num_bytes_consumed_ ||
(insertion_point != buffered_frames_.end() &&
frame.offset == insertion_point->offset);
}
void QuicStreamSequencer::SetBlockedUntilFlush() {
blocked_ = true;
}
void QuicStreamSequencer::SetUnblocked() {
blocked_ = false;
if (IsClosed() || HasBytesToRead()) {
stream_->OnDataAvailable();
}
}
void QuicStreamSequencer::RecordBytesConsumed(size_t bytes_consumed) {
num_bytes_consumed_ += bytes_consumed;
num_bytes_buffered_ -= bytes_consumed;
stream_->AddBytesConsumed(bytes_consumed);
}
} // namespace net
|