1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/socket/socks5_client_socket.h"
#include "base/basictypes.h"
#include "build/build_config.h"
#if defined(OS_WIN)
#include <ws2tcpip.h>
#elif defined(OS_POSIX)
#include <netdb.h>
#endif
#include "base/compiler_specific.h"
#include "base/trace_event.h"
#include "net/base/io_buffer.h"
#include "net/base/net_util.h"
namespace net {
const unsigned int SOCKS5ClientSocket::kGreetReadHeaderSize = 2;
const unsigned int SOCKS5ClientSocket::kWriteHeaderSize = 10;
const unsigned int SOCKS5ClientSocket::kReadHeaderSize = 5;
const uint8 SOCKS5ClientSocket::kSOCKS5Version = 0x05;
const uint8 SOCKS5ClientSocket::kTunnelCommand = 0x01;
const uint8 SOCKS5ClientSocket::kNullByte = 0x00;
COMPILE_ASSERT(sizeof(struct in_addr) == 4, incorrect_system_size_of_IPv4);
COMPILE_ASSERT(sizeof(struct in6_addr) == 16, incorrect_system_size_of_IPv6);
SOCKS5ClientSocket::SOCKS5ClientSocket(ClientSocket* transport_socket,
const HostResolver::RequestInfo& req_info,
HostResolver* host_resolver)
: ALLOW_THIS_IN_INITIALIZER_LIST(
io_callback_(this, &SOCKS5ClientSocket::OnIOComplete)),
transport_(transport_socket),
next_state_(STATE_NONE),
address_type_(kEndPointUnresolved),
user_callback_(NULL),
completed_handshake_(false),
bytes_sent_(0),
bytes_received_(0),
read_header_size(kReadHeaderSize),
host_resolver_(host_resolver),
host_request_info_(req_info) {
}
SOCKS5ClientSocket::~SOCKS5ClientSocket() {
Disconnect();
}
int SOCKS5ClientSocket::Connect(CompletionCallback* callback) {
DCHECK(transport_.get());
DCHECK(transport_->IsConnected());
DCHECK_EQ(STATE_NONE, next_state_);
DCHECK(!user_callback_);
// If already connected, then just return OK.
if (completed_handshake_)
return OK;
next_state_ = STATE_RESOLVE_HOST;
int rv = DoLoop(OK);
if (rv == ERR_IO_PENDING)
user_callback_ = callback;
return rv;
}
void SOCKS5ClientSocket::Disconnect() {
completed_handshake_ = false;
transport_->Disconnect();
}
bool SOCKS5ClientSocket::IsConnected() const {
return completed_handshake_ && transport_->IsConnected();
}
bool SOCKS5ClientSocket::IsConnectedAndIdle() const {
return completed_handshake_ && transport_->IsConnectedAndIdle();
}
// Read is called by the transport layer above to read. This can only be done
// if the SOCKS handshake is complete.
int SOCKS5ClientSocket::Read(IOBuffer* buf, int buf_len,
CompletionCallback* callback) {
DCHECK(completed_handshake_);
DCHECK_EQ(STATE_NONE, next_state_);
DCHECK(!user_callback_);
return transport_->Read(buf, buf_len, callback);
}
// Write is called by the transport layer. This can only be done if the
// SOCKS handshake is complete.
int SOCKS5ClientSocket::Write(IOBuffer* buf, int buf_len,
CompletionCallback* callback) {
DCHECK(completed_handshake_);
DCHECK_EQ(STATE_NONE, next_state_);
DCHECK(!user_callback_);
return transport_->Write(buf, buf_len, callback);
}
void SOCKS5ClientSocket::DoCallback(int result) {
DCHECK_NE(ERR_IO_PENDING, result);
DCHECK(user_callback_);
// Since Run() may result in Read being called,
// clear user_callback_ up front.
CompletionCallback* c = user_callback_;
user_callback_ = NULL;
DLOG(INFO) << "Finished setting up SOCKSv5 handshake";
c->Run(result);
}
void SOCKS5ClientSocket::OnIOComplete(int result) {
DCHECK_NE(STATE_NONE, next_state_);
int rv = DoLoop(result);
if (rv != ERR_IO_PENDING)
DoCallback(rv);
}
int SOCKS5ClientSocket::DoLoop(int last_io_result) {
DCHECK_NE(next_state_, STATE_NONE);
int rv = last_io_result;
do {
State state = next_state_;
next_state_ = STATE_NONE;
switch (state) {
case STATE_RESOLVE_HOST:
DCHECK_EQ(OK, rv);
rv = DoResolveHost();
break;
case STATE_RESOLVE_HOST_COMPLETE:
rv = DoResolveHostComplete(rv);
break;
case STATE_GREET_WRITE:
DCHECK_EQ(OK, rv);
rv = DoGreetWrite();
break;
case STATE_GREET_WRITE_COMPLETE:
rv = DoGreetWriteComplete(rv);
break;
case STATE_GREET_READ:
DCHECK_EQ(OK, rv);
rv = DoGreetRead();
break;
case STATE_GREET_READ_COMPLETE:
rv = DoGreetReadComplete(rv);
break;
case STATE_HANDSHAKE_WRITE:
DCHECK_EQ(OK, rv);
rv = DoHandshakeWrite();
break;
case STATE_HANDSHAKE_WRITE_COMPLETE:
rv = DoHandshakeWriteComplete(rv);
break;
case STATE_HANDSHAKE_READ:
DCHECK_EQ(OK, rv);
rv = DoHandshakeRead();
break;
case STATE_HANDSHAKE_READ_COMPLETE:
rv = DoHandshakeReadComplete(rv);
break;
default:
NOTREACHED() << "bad state";
rv = ERR_UNEXPECTED;
break;
}
} while (rv != ERR_IO_PENDING && next_state_ != STATE_NONE);
return rv;
}
int SOCKS5ClientSocket::DoResolveHost() {
DCHECK_EQ(kEndPointUnresolved, address_type_);
next_state_ = STATE_RESOLVE_HOST_COMPLETE;
return host_resolver_.Resolve(
host_request_info_, &addresses_, &io_callback_, NULL);
}
int SOCKS5ClientSocket::DoResolveHostComplete(int result) {
DCHECK_EQ(kEndPointUnresolved, address_type_);
bool ok = (result == OK);
next_state_ = STATE_GREET_WRITE;
if (ok) {
DCHECK(addresses_.head());
struct sockaddr* host_info = addresses_.head()->ai_addr;
if (host_info->sa_family == AF_INET) {
address_type_ = kEndPointResolvedIPv4;
} else if (host_info->sa_family == AF_INET6) {
address_type_ = kEndPointResolvedIPv6;
}
} else {
address_type_ = kEndPointFailedDomain;
}
buffer_.clear();
// Even if DNS resolution fails, we send OK since the server
// resolves the domain.
return OK;
}
const char kSOCKS5GreetWriteData[] = { 0x05, 0x01, 0x00 }; // no authentication
const char kSOCKS5GreetReadData[] = { 0x05, 0x00 };
int SOCKS5ClientSocket::DoGreetWrite() {
if (buffer_.empty()) {
buffer_ = std::string(kSOCKS5GreetWriteData,
arraysize(kSOCKS5GreetWriteData));
bytes_sent_ = 0;
}
next_state_ = STATE_GREET_WRITE_COMPLETE;
size_t handshake_buf_len = buffer_.size() - bytes_sent_;
handshake_buf_ = new IOBuffer(handshake_buf_len);
memcpy(handshake_buf_->data(), &buffer_.data()[bytes_sent_],
handshake_buf_len);
return transport_->Write(handshake_buf_, handshake_buf_len, &io_callback_);
}
int SOCKS5ClientSocket::DoGreetWriteComplete(int result) {
if (result < 0)
return result;
bytes_sent_ += result;
if (bytes_sent_ == buffer_.size()) {
buffer_.clear();
bytes_received_ = 0;
next_state_ = STATE_GREET_READ;
} else {
next_state_ = STATE_GREET_WRITE;
}
return OK;
}
int SOCKS5ClientSocket::DoGreetRead() {
next_state_ = STATE_GREET_READ_COMPLETE;
size_t handshake_buf_len = kGreetReadHeaderSize - bytes_received_;
handshake_buf_ = new IOBuffer(handshake_buf_len);
return transport_->Read(handshake_buf_, handshake_buf_len, &io_callback_);
}
int SOCKS5ClientSocket::DoGreetReadComplete(int result) {
if (result < 0)
return result;
if (result == 0)
return ERR_CONNECTION_CLOSED; // Unexpected socket close
bytes_received_ += result;
buffer_.append(handshake_buf_->data(), result);
if (bytes_received_ < kGreetReadHeaderSize) {
next_state_ = STATE_GREET_READ;
return OK;
}
// Got the greet data.
if (buffer_[0] != kSOCKS5Version || buffer_[1] != 0x00)
return ERR_INVALID_RESPONSE; // Unknown error
buffer_.clear();
next_state_ = STATE_HANDSHAKE_WRITE;
return OK;
}
int SOCKS5ClientSocket::BuildHandshakeWriteBuffer(std::string* handshake)
const {
DCHECK_NE(kEndPointUnresolved, address_type_);
DCHECK(handshake->empty());
handshake->push_back(kSOCKS5Version);
handshake->push_back(kTunnelCommand); // Connect command
handshake->push_back(kNullByte); // Reserved null
handshake->push_back(address_type_); // The type of connection
if (address_type_ == kEndPointFailedDomain) {
if(256 <= host_request_info_.hostname().size())
return ERR_ADDRESS_INVALID;
// First add the size of the hostname, followed by the hostname.
handshake->push_back(static_cast<unsigned char>(
host_request_info_.hostname().size()));
handshake->append(host_request_info_.hostname());
} else if (address_type_ == kEndPointResolvedIPv4) {
struct sockaddr_in* ipv4_host =
reinterpret_cast<struct sockaddr_in*>(addresses_.head()->ai_addr);
handshake->append(reinterpret_cast<char*>(&ipv4_host->sin_addr),
sizeof(ipv4_host->sin_addr));
} else if (address_type_ == kEndPointResolvedIPv6) {
struct sockaddr_in6* ipv6_host =
reinterpret_cast<struct sockaddr_in6*>(addresses_.head()->ai_addr);
handshake->append(reinterpret_cast<char*>(&ipv6_host->sin6_addr),
sizeof(ipv6_host->sin6_addr));
} else {
NOTREACHED();
}
uint16 nw_port = htons(host_request_info_.port());
handshake->append(reinterpret_cast<char*>(&nw_port), sizeof(nw_port));
return OK;
}
// Writes the SOCKS handshake data to the underlying socket connection.
int SOCKS5ClientSocket::DoHandshakeWrite() {
next_state_ = STATE_HANDSHAKE_WRITE_COMPLETE;
if (buffer_.empty()) {
int rv = BuildHandshakeWriteBuffer(&buffer_);
if (rv != OK)
return rv;
bytes_sent_ = 0;
}
int handshake_buf_len = buffer_.size() - bytes_sent_;
DCHECK_LT(0, handshake_buf_len);
handshake_buf_ = new IOBuffer(handshake_buf_len);
memcpy(handshake_buf_->data(), &buffer_[bytes_sent_],
handshake_buf_len);
return transport_->Write(handshake_buf_, handshake_buf_len, &io_callback_);
}
int SOCKS5ClientSocket::DoHandshakeWriteComplete(int result) {
DCHECK_NE(kEndPointUnresolved, address_type_);
if (result < 0)
return result;
// We ignore the case when result is 0, since the underlying Write
// may return spurious writes while waiting on the socket.
bytes_sent_ += result;
if (bytes_sent_ == buffer_.size()) {
next_state_ = STATE_HANDSHAKE_READ;
buffer_.clear();
} else if (bytes_sent_ < buffer_.size()) {
next_state_ = STATE_HANDSHAKE_WRITE;
} else {
NOTREACHED();
}
return OK;
}
int SOCKS5ClientSocket::DoHandshakeRead() {
DCHECK_NE(kEndPointUnresolved, address_type_);
next_state_ = STATE_HANDSHAKE_READ_COMPLETE;
if (buffer_.empty()) {
bytes_received_ = 0;
read_header_size = kReadHeaderSize;
}
int handshake_buf_len = read_header_size - bytes_received_;
handshake_buf_ = new IOBuffer(handshake_buf_len);
return transport_->Read(handshake_buf_, handshake_buf_len, &io_callback_);
}
int SOCKS5ClientSocket::DoHandshakeReadComplete(int result) {
DCHECK_NE(kEndPointUnresolved, address_type_);
if (result < 0)
return result;
// The underlying socket closed unexpectedly.
if (result == 0)
return ERR_CONNECTION_CLOSED;
buffer_.append(handshake_buf_->data(), result);
bytes_received_ += result;
// When the first few bytes are read, check how many more are required
// and accordingly increase them
if (bytes_received_ == kReadHeaderSize) {
// TODO(arindam): add error codes to net/error_list.h
if (buffer_[0] != kSOCKS5Version || buffer_[2] != kNullByte)
return ERR_INVALID_RESPONSE;
if (buffer_[1] != 0x00)
return ERR_FAILED;
// We check the type of IP/Domain the server returns and accordingly
// increase the size of the response. For domains, we need to read the
// size of the domain, so the initial request size is upto the domain
// size. Since for IPv4/IPv6 the size is fixed and hence no 'size' is
// read, we substract 1 byte from the additional request size.
SocksEndPointAddressType address_type =
static_cast<SocksEndPointAddressType>(buffer_[3]);
if (address_type == kEndPointFailedDomain)
read_header_size += static_cast<uint8>(buffer_[4]);
else if (address_type == kEndPointResolvedIPv4)
read_header_size += sizeof(struct in_addr) - 1;
else if (address_type == kEndPointResolvedIPv6)
read_header_size += sizeof(struct in6_addr) - 1;
else
return ERR_INVALID_RESPONSE;
read_header_size += 2; // for the port.
next_state_ = STATE_HANDSHAKE_READ;
return OK;
}
// When the final bytes are read, setup handshake. We ignore the rest
// of the response since they represent the SOCKSv5 endpoint and have
// no use when doing a tunnel connection.
if (bytes_received_ == read_header_size) {
completed_handshake_ = true;
buffer_.clear();
next_state_ = STATE_NONE;
return OK;
}
next_state_ = STATE_HANDSHAKE_READ;
return OK;
}
#if defined(OS_LINUX)
int SOCKS5ClientSocket::GetPeerName(struct sockaddr* name,
socklen_t* namelen) {
return transport_->GetPeerName(name, namelen);
}
#endif
} // namespace net
|