1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/socket/socks_client_socket.h"
#include "base/basictypes.h"
#include "build/build_config.h"
#if defined(OS_WIN)
#include <ws2tcpip.h>
#elif defined(OS_POSIX)
#include <netdb.h>
#endif
#include "base/compiler_specific.h"
#include "base/trace_event.h"
#include "net/base/io_buffer.h"
#include "net/base/net_util.h"
namespace net {
// Every SOCKS server requests a user-id from the client. It is optional
// and we send an empty string.
static const char kEmptyUserId[] = "";
// The SOCKS4a implementation suggests to use an invalid IP in case the DNS
// resolution at client fails.
static const uint8 kInvalidIp[] = { 0, 0, 0, 127 };
// For SOCKS4, the client sends 8 bytes plus the size of the user-id.
// For SOCKS4A, this increases to accomodate the unresolved hostname.
static const unsigned int kWriteHeaderSize = 8;
// For SOCKS4 and SOCKS4a, the server sends 8 bytes for acknowledgement.
static const unsigned int kReadHeaderSize = 8;
// Server Response codes for SOCKS.
static const uint8 kServerResponseOk = 0x5A;
static const uint8 kServerResponseRejected = 0x5B;
static const uint8 kServerResponseNotReachable = 0x5C;
static const uint8 kServerResponseMismatchedUserId = 0x5D;
static const uint8 kSOCKSVersion4 = 0x04;
static const uint8 kSOCKSStreamRequest = 0x01;
// A struct holding the essential details of the SOCKS4/4a Server Request.
// The port in the header is stored in network byte order.
struct SOCKS4ServerRequest {
uint8 version;
uint8 command;
uint16 nw_port;
uint8 ip[4];
};
COMPILE_ASSERT(sizeof(SOCKS4ServerRequest) == kWriteHeaderSize,
socks4_server_request_struct_wrong_size);
// A struct holding details of the SOCKS4/4a Server Response.
struct SOCKS4ServerResponse {
uint8 reserved_null;
uint8 code;
uint16 port;
uint8 ip[4];
};
COMPILE_ASSERT(sizeof(SOCKS4ServerResponse) == kReadHeaderSize,
socks4_server_response_struct_wrong_size);
SOCKSClientSocket::SOCKSClientSocket(ClientSocket* transport_socket,
const HostResolver::RequestInfo& req_info,
HostResolver* host_resolver)
: ALLOW_THIS_IN_INITIALIZER_LIST(
io_callback_(this, &SOCKSClientSocket::OnIOComplete)),
transport_(transport_socket),
next_state_(STATE_NONE),
socks_version_(kSOCKS4Unresolved),
user_callback_(NULL),
completed_handshake_(false),
bytes_sent_(0),
bytes_received_(0),
host_resolver_(host_resolver),
host_request_info_(req_info) {
}
SOCKSClientSocket::~SOCKSClientSocket() {
Disconnect();
}
int SOCKSClientSocket::Connect(CompletionCallback* callback) {
DCHECK(transport_.get());
DCHECK(transport_->IsConnected());
DCHECK_EQ(STATE_NONE, next_state_);
DCHECK(!user_callback_);
// If already connected, then just return OK.
if (completed_handshake_)
return OK;
next_state_ = STATE_RESOLVE_HOST;
int rv = DoLoop(OK);
if (rv == ERR_IO_PENDING)
user_callback_ = callback;
return rv;
}
void SOCKSClientSocket::Disconnect() {
completed_handshake_ = false;
transport_->Disconnect();
}
bool SOCKSClientSocket::IsConnected() const {
return completed_handshake_ && transport_->IsConnected();
}
bool SOCKSClientSocket::IsConnectedAndIdle() const {
return completed_handshake_ && transport_->IsConnectedAndIdle();
}
// Read is called by the transport layer above to read. This can only be done
// if the SOCKS handshake is complete.
int SOCKSClientSocket::Read(IOBuffer* buf, int buf_len,
CompletionCallback* callback) {
DCHECK(completed_handshake_);
DCHECK_EQ(STATE_NONE, next_state_);
DCHECK(!user_callback_);
return transport_->Read(buf, buf_len, callback);
}
// Write is called by the transport layer. This can only be done if the
// SOCKS handshake is complete.
int SOCKSClientSocket::Write(IOBuffer* buf, int buf_len,
CompletionCallback* callback) {
DCHECK(completed_handshake_);
DCHECK_EQ(STATE_NONE, next_state_);
DCHECK(!user_callback_);
return transport_->Write(buf, buf_len, callback);
}
void SOCKSClientSocket::DoCallback(int result) {
DCHECK_NE(ERR_IO_PENDING, result);
DCHECK(user_callback_);
// Since Run() may result in Read being called,
// clear user_callback_ up front.
CompletionCallback* c = user_callback_;
user_callback_ = NULL;
DLOG(INFO) << "Finished setting up SOCKS handshake";
c->Run(result);
}
void SOCKSClientSocket::OnIOComplete(int result) {
DCHECK_NE(STATE_NONE, next_state_);
int rv = DoLoop(result);
if (rv != ERR_IO_PENDING)
DoCallback(rv);
}
int SOCKSClientSocket::DoLoop(int last_io_result) {
DCHECK_NE(next_state_, STATE_NONE);
int rv = last_io_result;
do {
State state = next_state_;
next_state_ = STATE_NONE;
switch (state) {
case STATE_RESOLVE_HOST:
DCHECK_EQ(OK, rv);
rv = DoResolveHost();
break;
case STATE_RESOLVE_HOST_COMPLETE:
rv = DoResolveHostComplete(rv);
break;
case STATE_HANDSHAKE_WRITE:
DCHECK_EQ(OK, rv);
rv = DoHandshakeWrite();
break;
case STATE_HANDSHAKE_WRITE_COMPLETE:
rv = DoHandshakeWriteComplete(rv);
break;
case STATE_HANDSHAKE_READ:
DCHECK_EQ(OK, rv);
rv = DoHandshakeRead();
break;
case STATE_HANDSHAKE_READ_COMPLETE:
rv = DoHandshakeReadComplete(rv);
break;
default:
NOTREACHED() << "bad state";
rv = ERR_UNEXPECTED;
break;
}
} while (rv != ERR_IO_PENDING && next_state_ != STATE_NONE);
return rv;
}
int SOCKSClientSocket::DoResolveHost() {
DCHECK_EQ(kSOCKS4Unresolved, socks_version_);
next_state_ = STATE_RESOLVE_HOST_COMPLETE;
return host_resolver_.Resolve(
host_request_info_, &addresses_, &io_callback_, NULL);
}
int SOCKSClientSocket::DoResolveHostComplete(int result) {
DCHECK_EQ(kSOCKS4Unresolved, socks_version_);
bool ok = (result == OK);
next_state_ = STATE_HANDSHAKE_WRITE;
if (ok) {
DCHECK(addresses_.head());
// If the host is resolved to an IPv6 address, we revert to SOCKS4a
// since IPv6 is unsupported by SOCKS4/4a protocol.
struct sockaddr *host_info = addresses_.head()->ai_addr;
if (host_info->sa_family == AF_INET) {
DLOG(INFO) << "Resolved host. Using SOCKS4 to communicate";
socks_version_ = kSOCKS4;
} else {
DLOG(INFO) << "Resolved host but to IPv6. Using SOCKS4a to communicate";
socks_version_ = kSOCKS4a;
}
} else {
DLOG(INFO) << "Could not resolve host. Using SOCKS4a to communicate";
socks_version_ = kSOCKS4a;
}
// Even if DNS resolution fails, we send OK since the server
// resolves the domain.
return OK;
}
// Builds the buffer that is to be sent to the server.
// We check whether the SOCKS proxy is 4 or 4A.
// In case it is 4A, the record size increases by size of the hostname.
const std::string SOCKSClientSocket::BuildHandshakeWriteBuffer() const {
DCHECK_NE(kSOCKS4Unresolved, socks_version_);
SOCKS4ServerRequest request;
request.version = kSOCKSVersion4;
request.command = kSOCKSStreamRequest;
request.nw_port = htons(host_request_info_.port());
if (socks_version_ == kSOCKS4) {
const struct addrinfo* ai = addresses_.head();
DCHECK(ai);
// If the sockaddr is IPv6, we have already marked the version to socks4a
// and so this step does not get hit.
struct sockaddr_in* ipv4_host =
reinterpret_cast<struct sockaddr_in*>(ai->ai_addr);
memcpy(&request.ip, &(ipv4_host->sin_addr), sizeof(ipv4_host->sin_addr));
DLOG(INFO) << "Resolved Host is : " << NetAddressToString(ai);
} else if (socks_version_ == kSOCKS4a) {
// invalid IP of the form 0.0.0.127
memcpy(&request.ip, kInvalidIp, arraysize(kInvalidIp));
} else {
NOTREACHED();
}
std::string handshake_data(reinterpret_cast<char*>(&request),
sizeof(request));
handshake_data.append(kEmptyUserId, arraysize(kEmptyUserId));
// In case we are passing the domain also, pass the hostname
// terminated with a null character.
if (socks_version_ == kSOCKS4a) {
handshake_data.append(host_request_info_.hostname());
handshake_data.push_back('\0');
}
return handshake_data;
}
// Writes the SOCKS handshake data to the underlying socket connection.
int SOCKSClientSocket::DoHandshakeWrite() {
next_state_ = STATE_HANDSHAKE_WRITE_COMPLETE;
if (buffer_.empty()) {
buffer_ = BuildHandshakeWriteBuffer();
bytes_sent_ = 0;
}
int handshake_buf_len = buffer_.size() - bytes_sent_;
DCHECK_GT(handshake_buf_len, 0);
handshake_buf_ = new IOBuffer(handshake_buf_len);
memcpy(handshake_buf_->data(), &buffer_[bytes_sent_],
handshake_buf_len);
return transport_->Write(handshake_buf_, handshake_buf_len, &io_callback_);
}
int SOCKSClientSocket::DoHandshakeWriteComplete(int result) {
DCHECK_NE(kSOCKS4Unresolved, socks_version_);
if (result < 0)
return result;
// We ignore the case when result is 0, since the underlying Write
// may return spurious writes while waiting on the socket.
bytes_sent_ += result;
if (bytes_sent_ == buffer_.size()) {
next_state_ = STATE_HANDSHAKE_READ;
buffer_.clear();
} else if (bytes_sent_ < buffer_.size()) {
next_state_ = STATE_HANDSHAKE_WRITE;
} else {
return ERR_UNEXPECTED;
}
return OK;
}
int SOCKSClientSocket::DoHandshakeRead() {
DCHECK_NE(kSOCKS4Unresolved, socks_version_);
next_state_ = STATE_HANDSHAKE_READ_COMPLETE;
if (buffer_.empty()) {
bytes_received_ = 0;
}
int handshake_buf_len = kReadHeaderSize - bytes_received_;
handshake_buf_ = new IOBuffer(handshake_buf_len);
return transport_->Read(handshake_buf_, handshake_buf_len, &io_callback_);
}
int SOCKSClientSocket::DoHandshakeReadComplete(int result) {
DCHECK_NE(kSOCKS4Unresolved, socks_version_);
if (result < 0)
return result;
// The underlying socket closed unexpectedly.
if (result == 0)
return ERR_CONNECTION_CLOSED;
if (bytes_received_ + result > kReadHeaderSize)
return ERR_INVALID_RESPONSE;
buffer_.append(handshake_buf_->data(), result);
bytes_received_ += result;
if (bytes_received_ < kReadHeaderSize) {
next_state_ = STATE_HANDSHAKE_READ;
return OK;
}
const SOCKS4ServerResponse* response =
reinterpret_cast<const SOCKS4ServerResponse*>(buffer_.data());
if (response->reserved_null != 0x00) {
LOG(ERROR) << "Unknown response from SOCKS server.";
return ERR_INVALID_RESPONSE;
}
// TODO(arindam): Add SOCKS specific failure codes in net_error_list.h
switch (response->code) {
case kServerResponseOk:
completed_handshake_ = true;
return OK;
case kServerResponseRejected:
LOG(ERROR) << "SOCKS request rejected or failed";
return ERR_FAILED;
case kServerResponseNotReachable:
LOG(ERROR) << "SOCKS request failed because client is not running "
<< "identd (or not reachable from the server)";
return ERR_NAME_NOT_RESOLVED;
case kServerResponseMismatchedUserId:
LOG(ERROR) << "SOCKS request failed because client's identd could "
<< "not confirm the user ID string in the request";
return ERR_FAILED;
default:
LOG(ERROR) << "SOCKS server sent unknown response";
return ERR_INVALID_RESPONSE;
}
// Note: we ignore the last 6 bytes as specified by the SOCKS protocol
}
#if defined(OS_LINUX)
int SOCKSClientSocket::GetPeerName(struct sockaddr* name,
socklen_t* namelen) {
return transport_->GetPeerName(name, namelen);
}
#endif
} // namespace net
|