1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
|
/*
* Copyright 2009, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// This file contains the functions to help with images.
// The precompiled header must appear before anything else.
#include "core/cross/precompile.h"
#include "core/cross/image_utils.h"
#include "core/cross/pointer_utils.h"
#include "core/cross/math_utilities.h"
namespace o3d {
namespace image {
// Computes the size of the buffer containing a an image, given its width,
// height and format.
size_t ComputeBufferSize(unsigned int width,
unsigned int height,
Texture::Format format) {
DCHECK(CheckImageDimensions(width, height));
unsigned int pixels = width * height;
switch (format) {
case Texture::XRGB8:
case Texture::ARGB8:
return 4 * sizeof(uint8) * pixels; // NOLINT
case Texture::ABGR16F:
return 4 * sizeof(uint16) * pixels; // NOLINT
case Texture::R32F:
return sizeof(float) * pixels; // NOLINT
case Texture::ABGR32F:
return 4 * sizeof(float) * pixels; // NOLINT
case Texture::DXT1:
case Texture::DXT3:
case Texture::DXT5: {
unsigned int blocks = ((width + 3) / 4) * ((height + 3) / 4);
unsigned int bytes_per_block = format == Texture::DXT1 ? 8 : 16;
return blocks * bytes_per_block;
}
case Texture::UNKNOWN_FORMAT:
break;
}
// failed to find a matching format
LOG(ERROR) << "Unrecognized Texture format type.";
return 0;
}
// Gets the size of the buffer containing a mip-map chain, given its base
// width, height, format and number of mip-map levels.
size_t ComputeMipChainSize(unsigned int base_width,
unsigned int base_height,
Texture::Format format,
unsigned int num_mipmaps) {
DCHECK(CheckImageDimensions(base_width, base_height));
size_t total_size = 0;
unsigned int mip_width = base_width;
unsigned int mip_height = base_height;
for (unsigned int i = 0; i < num_mipmaps; ++i) {
total_size += ComputeBufferSize(mip_width, mip_height, format);
mip_width = std::max(1U, mip_width >> 1);
mip_height = std::max(1U, mip_height >> 1);
}
return total_size;
}
// Scales the image using basic point filtering.
bool ScaleUpToPOT(unsigned int width,
unsigned int height,
Texture::Format format,
const void *src,
void *dst,
int dst_pitch) {
DCHECK(CheckImageDimensions(width, height));
switch (format) {
case Texture::XRGB8:
case Texture::ARGB8:
case Texture::ABGR16F:
case Texture::R32F:
case Texture::ABGR32F:
break;
case Texture::DXT1:
case Texture::DXT3:
case Texture::DXT5:
case Texture::UNKNOWN_FORMAT:
DCHECK(false);
return false;
}
unsigned int pot_width = ComputePOTSize(width);
unsigned int pot_height = ComputePOTSize(height);
if (pot_width == width && pot_height == height && src == dst)
return true;
return Scale(
width, height, format, src, pot_width, pot_height, dst, dst_pitch);
}
unsigned int GetNumComponentsForFormat(o3d::Texture::Format format) {
switch (format) {
case o3d::Texture::XRGB8:
case o3d::Texture::ARGB8:
case o3d::Texture::ABGR16F:
case o3d::Texture::ABGR32F:
return 4;
case o3d::Texture::R32F:
return 1;
case o3d::Texture::DXT1:
case o3d::Texture::DXT3:
case o3d::Texture::DXT5:
case o3d::Texture::UNKNOWN_FORMAT:
break;
}
return 0;
}
bool CanMakeMips(o3d::Texture::Format format) {
return GetNumComponentsForFormat(format) != 0;
}
namespace {
static const float kEpsilon = 0.0001f;
static const float kPi = 3.14159265358979f;
static const int kFilterSize = 3;
// utility function, round float numbers into 0 to 255 integers.
uint8 Safe8Round(float f) {
f += 0.5f;
if (f < 0.0f) {
return 0;
} else if (!(f < 255.0f)) {
return 255;
}
return static_cast<uint8>(f);
}
template <typename T>
void PointScale(
unsigned components,
const void* src,
unsigned src_width,
unsigned src_height,
void* dst,
int dst_pitch,
unsigned dst_width,
unsigned dst_height) {
const T* use_src = reinterpret_cast<const T*>(src);
T* use_dst = reinterpret_cast<T*>(dst);
int pitch = dst_pitch / sizeof(*use_src) / components;
// Start from the end to be able to do it in place.
for (unsigned int y = dst_height - 1; y < dst_height; --y) {
// max value for y is dst_height - 1, which makes :
// base_y = (2*dst_height - 1) * src_height / (2 * dst_height)
// which is < src_height.
unsigned int base_y = ((y * 2 + 1) * src_height) / (dst_height * 2);
DCHECK_LT(base_y, src_height);
for (unsigned int x = dst_width - 1; x < dst_width; --x) {
unsigned int base_x = ((x * 2 + 1) * src_width) / (dst_width * 2);
DCHECK_LT(base_x, src_width);
for (unsigned int c = 0; c < components; ++c) {
use_dst[(y * pitch + x) * components + c] =
use_src[(base_y * src_width + base_x) * components + c];
}
}
}
}
} // anonymous namespace
// Scales the image using basic point filtering.
bool Scale(unsigned int src_width,
unsigned int src_height,
Texture::Format format,
const void *src,
unsigned int dst_width,
unsigned int dst_height,
void *dst,
int dst_pitch) {
DCHECK(CheckImageDimensions(src_width, src_height));
DCHECK(CheckImageDimensions(dst_width, dst_height));
switch (format) {
case Texture::XRGB8:
case Texture::ARGB8: {
PointScale<uint8>(4, src, src_width, src_height,
dst, dst_pitch, dst_width, dst_height);
break;
}
case Texture::ABGR16F: {
PointScale<uint16>(4, src, src_width, src_height,
dst, dst_pitch, dst_width, dst_height);
break;
}
case Texture::R32F:
case Texture::ABGR32F: {
PointScale<float>(format == Texture::R32F ? 1 : 4,
src, src_width, src_height,
dst, dst_pitch, dst_width, dst_height);
break;
}
case Texture::DXT1:
case Texture::DXT3:
case Texture::DXT5:
case Texture::UNKNOWN_FORMAT:
DCHECK(false);
return false;
}
return true;
}
namespace {
// utility function called in AdjustDrawImageBoundary.
// help to adjust a specific dimension,
// if start point or ending point is out of boundary.
bool AdjustDrawImageBoundHelper(int* src_a, int* dest_a,
int* src_length, int* dest_length,
int src_bmp_length) {
if (*src_length == 0 || *dest_length == 0) {
return false;
}
// check if start point is out of boundary.
// if src_a < 0, src_length must be positive.
if (*src_a < 0) {
int src_length_delta = 0 - *src_a;
*dest_a = *dest_a + (*dest_length) * src_length_delta / (*src_length);
*dest_length = *dest_length - (*dest_length) *
src_length_delta / (*src_length);
*src_length = *src_length - src_length_delta;
*src_a = 0;
}
// if src_a >= src_bmp_width, src_length must be negative.
if (*src_a >= src_bmp_length) {
int src_length_delta = *src_a - (src_bmp_length - 1);
*dest_a = *dest_a - (*dest_length) * src_length_delta / (*src_length);
*dest_length = *dest_length - (*dest_length) *
src_length_delta / *src_length;
*src_length = *src_length - src_length_delta;
*src_a = src_bmp_length - 1;
}
if (*src_length == 0 || *dest_length == 0) {
return false;
}
// check whether start point + related length is out of boundary.
// if src_a + src_length > src_bmp_length, src_length must be positive.
if (*src_a + *src_length > src_bmp_length) {
int src_length_delta = *src_length - (src_bmp_length - *src_a);
*dest_length = *dest_length - (*dest_length) *
src_length_delta / (*src_length);
*src_length = *src_length - src_length_delta;
}
// if src_a + src_length < -1, src_length must be negative.
if (*src_a + *src_length < -1) {
int src_length_delta = 0 - (*src_a + *src_length);
*dest_length = *dest_length + (*dest_length) *
src_length_delta / (*src_length);
*src_length = *src_length + src_length_delta;
}
return true;
}
template <typename OriginalType,
float convert_to_float(OriginalType value),
OriginalType convert_to_original(float)>
void LanczosResize1D(const void* src_data, int src_pitch,
int src_x, int src_y,
int width, int height,
void* dest_data, int dest_pitch,
int dest_x, int dest_y,
int nwidth,
bool is_width, int components) {
// calculate scale factor and init the weight array for lanczos filter.
float scale = fabs(static_cast<float>(width) / nwidth);
float support = kFilterSize * scale;
scoped_array<float> weight(new float[static_cast<int>(support * 2) + 4]);
// we assume width is the dimension we are scaling, and height stays
// the same.
for (int i = 0; i < abs(nwidth); ++i) {
// center is the corresponding coordinate of i in original img.
float center = (i + 0.5f) * scale;
// boundary of weight array in original img.
int xmin = static_cast<int>(floorf(center - support));
if (xmin < 0) {
xmin = 0;
}
int xmax = static_cast<int>(ceilf(center + support));
if (xmax >= abs(width)) {
xmax = abs(width) - 1;
}
// fill up weight array by lanczos filter.
float wsum = 0.0;
for (int ox = xmin; ox <= xmax; ++ox) {
float wtemp;
float dx = ox + 0.5f - center;
// lanczos filter
if (dx <= -kFilterSize || dx >= kFilterSize) {
wtemp = 0.0;
} else if (dx == 0.0) {
wtemp = 1.0f;
} else {
wtemp = kFilterSize * sinf(kPi * dx) * sinf(kPi / kFilterSize * dx) /
(kPi * kPi * dx * dx);
}
weight[ox - xmin] = wtemp;
wsum += wtemp;
}
int wcount = xmax - xmin + 1;
// Normalize the weights.
if (fabs(wsum) > kEpsilon) {
for (int k = 0; k < wcount; ++k) {
weight[k] /= wsum;
}
}
// Now that we've computed the filter weights for this x-position
// of the image, we can apply that filter to all pixels in that
// column.
// calculate coordinate in new img.
int x = nwidth >= 0 ? i : -i;
// lower bound of coordinate in original img.
if (width < 0) {
xmin = -1 * xmin;
}
for (int j = 0; j < abs(height); ++j) {
// coordinate in height, same in src and dest img.
int base_y = height >= 0 ? j : -j;
// TODO(yux): fix the vertical flip problem and merge this if-else
// statement coz at that time, there would be no need to check
// which measure we are scaling.
if (is_width) {
const OriginalType* inrow = PointerFromVoidPointer<const OriginalType*>(
src_data, (src_y + base_y) * src_pitch) +
(src_x + xmin) * components;
OriginalType* outpix = PointerFromVoidPointer<OriginalType*>(
dest_data, (dest_y + base_y) * dest_pitch) +
(dest_x + x) * components;
int step = width >= 0 ? components : -components;
for (int b = 0; b < components; ++b) {
float sum = 0.0;
for (int k = 0, xk = b; k < wcount; ++k, xk += step) {
sum += weight[k] * convert_to_float(inrow[xk]);
}
outpix[b] = convert_to_original(sum);
}
} else {
const OriginalType* inrow = PointerFromVoidPointer<const OriginalType*>(
src_data,
(src_y + xmin) * src_pitch) +
(src_x + base_y) * components;
OriginalType* outpix = PointerFromVoidPointer<OriginalType*>(
dest_data,
(dest_y + x) * dest_pitch) +
(dest_x + base_y) * components;
int step = width >= 0 ? src_pitch : -src_pitch;
for (int b = 0; b < components; ++b) {
float sum = 0.0;
const OriginalType* work = inrow + b;
for (int k = 0; k < wcount; ++k) {
sum += weight[k] * convert_to_float(*work);
work = AddPointerOffset<const OriginalType*>(work, step);
}
outpix[b] = convert_to_original(sum);
}
}
}
}
}
template <typename OriginalType,
float convert_to_float(OriginalType value),
OriginalType convert_to_original(float)>
void TypedLanczosScale(const void* src, int src_pitch,
int src_x, int src_y,
int src_width, int src_height,
void* dest, int dest_pitch,
int dest_x, int dest_y,
int dest_width, int dest_height,
int components) {
// Scale the image horizontally to a temp buffer.
int temp_img_width = abs(dest_width);
int temp_img_height = abs(src_height);
int temp_width = dest_width;
int temp_height = src_height;
int temp_x = 0, temp_y = 0;
if (temp_width < 0)
temp_x = abs(temp_width) - 1;
if (temp_height < 0)
temp_y = abs(temp_height) - 1;
scoped_array<OriginalType> temp(
new OriginalType[temp_img_width * temp_img_height * components]);
LanczosResize1D<OriginalType, convert_to_float, convert_to_original>(
src, src_pitch, src_x, src_y, src_width, src_height,
temp.get(), temp_img_width * components * sizeof(OriginalType),
temp_x, temp_y, temp_width,
true, components);
// Scale the temp buffer vertically to get the final result.
LanczosResize1D<OriginalType, convert_to_float, convert_to_original>(
temp.get(), temp_img_width * components * sizeof(OriginalType),
temp_x, temp_y, temp_height, temp_width,
dest, dest_pitch,
dest_x, dest_y, dest_height,
false, components);
}
// Compute a texel, filtered from several source texels. This function assumes
// minification.
// Parameters:
// x: x-coordinate of the destination texel in the destination image
// y: y-coordinate of the destination texel in the destination image
// dst_width: width of the destination image
// dst_height: height of the destination image
// dst_data: address of the destination image data
// dst_pitch: the number of bytes per row of the destination.
// src_width: width of the source image
// src_height: height of the source image
// src_data: address of the source image data
// src_pitch: the number of bytes per row of the source.
// components: number of components in the image.
template <typename OriginalType,
typename WorkType,
WorkType convert_to_work(OriginalType value),
OriginalType convert_to_original(WorkType)>
void FilterTexel(unsigned int x,
unsigned int y,
unsigned int dst_width,
unsigned int dst_height,
void *dst_data,
int dst_pitch,
unsigned int src_width,
unsigned int src_height,
const void *src_data,
int src_pitch,
unsigned int components) {
DCHECK(image::CheckImageDimensions(src_width, src_height));
DCHECK(image::CheckImageDimensions(dst_width, dst_height));
DCHECK_LE(dst_width, src_width);
DCHECK_LE(dst_height, src_height);
DCHECK_LE(x, dst_width);
DCHECK_LE(y, dst_height);
DCHECK_LE(static_cast<int>(src_width), src_pitch);
DCHECK_LE(static_cast<int>(dst_width), dst_pitch);
// the texel at (x, y) represents the square of texture coordinates
// [x/dst_w, (x+1)/dst_w) x [y/dst_h, (y+1)/dst_h).
// This takes contributions from the texels:
// [floor(x*src_w/dst_w), ceil((x+1)*src_w/dst_w)-1]
// x
// [floor(y*src_h/dst_h), ceil((y+1)*src_h/dst_h)-1]
// from the previous level.
unsigned int src_min_x = (x * src_width) / dst_width;
unsigned int src_max_x =
((x + 1) * src_width + dst_width - 1) / dst_width - 1;
unsigned int src_min_y = (y * src_height) / dst_height;
unsigned int src_max_y =
((y + 1) * src_height + dst_height - 1) / dst_height - 1;
// Find the contribution of source each texel, by computing the coverage of
// the destination texel on the source texel. We do all the computations in
// fixed point, at a src_height*src_width factor to be able to use ints,
// but keep all the precision.
// Accumulators need to be 64 bits though, because src_height*src_width can
// be 24 bits for a 4kx4k base, to which we need to multiply the component
// value which is another 8 bits (and we need to accumulate several of them).
// NOTE: all of our formats use at most 4 components per pixel.
// Instead of dynamically allocating a buffer for each pixel on the heap,
// just allocate the worst case on the stack.
DCHECK_LE(components, 4u);
WorkType accum[4] = {0};
for (unsigned int src_x = src_min_x; src_x <= src_max_x; ++src_x) {
for (unsigned int src_y = src_min_y; src_y <= src_max_y; ++src_y) {
// The contribution of a fully covered texel is 1/(m_x*m_y) where m_x is
// the x-dimension minification factor (src_width/dst_width) and m_y is
// the y-dimenstion minification factor (src_height/dst_height).
// If the texel is partially covered (on a border), the contribution is
// proportional to the covered area. We compute it as the product of the
// covered x-length by the covered y-length.
unsigned int x_contrib = dst_width;
if (src_x * dst_width < x * src_width) {
// source texel is across the left border of the footprint of the
// destination texel.
x_contrib = (src_x + 1) * dst_width - x * src_width;
} else if ((src_x + 1) * dst_width > (x + 1) * src_width) {
// source texel is across the right border of the footprint of the
// destination texel.
x_contrib = (x+1) * src_width - src_x * dst_width;
}
DCHECK(x_contrib > 0);
DCHECK(x_contrib <= dst_width);
unsigned int y_contrib = dst_height;
if (src_y * dst_height < y * src_height) {
// source texel is across the top border of the footprint of the
// destination texel.
y_contrib = (src_y + 1) * dst_height - y * src_height;
} else if ((src_y + 1) * dst_height > (y + 1) * src_height) {
// source texel is across the bottom border of the footprint of the
// destination texel.
y_contrib = (y + 1) * src_height - src_y * dst_height;
}
DCHECK(y_contrib > 0);
DCHECK(y_contrib <= dst_height);
WorkType contrib = static_cast<WorkType>(x_contrib * y_contrib);
const OriginalType* src = PointerFromVoidPointer<const OriginalType*>(
src_data, src_y * src_pitch);
for (unsigned int c = 0; c < components; ++c) {
accum[c] += contrib *
convert_to_work(src[src_x * components + c]);
}
}
}
OriginalType* dst = PointerFromVoidPointer<OriginalType*>(
dst_data, y * dst_pitch);
for (unsigned int c = 0; c < components; ++c) {
WorkType value = accum[c] / static_cast<WorkType>(src_height * src_width);
dst[x * components + c] = convert_to_original(value);
}
}
template <typename OriginalType,
typename WorkType,
typename FilterType,
WorkType convert_to_work(OriginalType value),
OriginalType convert_from_work(WorkType),
FilterType convert_to_filter(OriginalType value),
OriginalType convert_from_filter(FilterType)>
void GenerateMip(unsigned int components,
unsigned int src_width,
unsigned int src_height,
const void *src_data,
int src_pitch,
void *dst_data,
int dst_pitch) {
unsigned int mip_width = std::max(1U, src_width >> 1);
unsigned int mip_height = std::max(1U, src_height >> 1);
if (mip_width * 2 == src_width && mip_height * 2 == src_height) {
// Easy case: every texel maps to exactly 4 texels in the previous level.
for (unsigned int y = 0; y < mip_height; ++y) {
const OriginalType* src0 = PointerFromVoidPointer<const OriginalType*>(
src_data, y * 2 * src_pitch);
const OriginalType* src1 =
AddPointerOffset<const OriginalType*>(src0, src_pitch);
OriginalType* dst = PointerFromVoidPointer<OriginalType*>(
dst_data, y * dst_pitch);
for (unsigned int x = 0; x < mip_width; ++x) {
for (unsigned int c = 0; c < components; ++c) {
// Average the 4 texels.
unsigned int offset = x * 2 * components + c;
WorkType value = convert_to_work(src0[offset]); // (2x, 2y)
value += convert_to_work(src0[offset + components]); // (2x+1, 2y)
value += convert_to_work(src1[offset]); // (2x, 2y+1)
value += convert_to_work(src1[offset + components]); // (2x+1, 2y+1)
dst[x * components + c] =
convert_from_work(value / static_cast<WorkType>(4));
}
}
}
} else {
for (unsigned int y = 0; y < mip_height; ++y) {
for (unsigned int x = 0; x < mip_width; ++x) {
FilterTexel<OriginalType,
FilterType,
convert_to_filter,
convert_from_filter>(
x, y, mip_width, mip_height, dst_data, dst_pitch,
src_width, src_height, src_data, src_pitch, components);
}
}
}
}
uint32 UInt8ToUInt32(uint8 value) {
return static_cast<uint32>(value);
};
uint8 UInt32ToUInt8(uint32 value) {
return static_cast<uint8>(value);
};
uint64 UInt8ToUInt64(uint8 value) {
return static_cast<uint64>(value);
};
uint8 UInt64ToUInt8(uint64 value) {
return static_cast<uint8>(value);
};
float UInt8ToFloat(uint8 value) {
return static_cast<float>(value);
};
float FloatToFloat(float value) {
return value;
}
double FloatToDouble(float value) {
return static_cast<double>(value);
}
float DoubleToFloat(double value) {
return static_cast<float>(value);
}
float HalfToFloat(uint16 value) {
return Vectormath::Aos::HalfToFloat(value);
}
uint16 FloatToHalf(float value) {
return Vectormath::Aos::FloatToHalf(value);
}
double HalfToDouble(uint16 value) {
return static_cast<double>(Vectormath::Aos::HalfToFloat(value));
}
uint16 DoubleToHalf(double value) {
return Vectormath::Aos::FloatToHalf(static_cast<float>(value));
}
} // anonymous namespace
bool AdjustForSetRect(int* src_y,
int src_width,
int src_height,
int* src_pitch,
int* dst_y,
int dst_width,
int* dst_height) {
if (src_width != dst_width || abs(src_height) != abs(*dst_height) ||
src_width < 0) {
return false;
}
if (*dst_height < 0) {
*dst_y = *dst_y + *dst_height + 1;
*dst_height = -*dst_height;
if (src_height < 0) {
*src_y = *src_y + src_height + 1;
} else {
*src_y = *src_y + src_height - 1;
*src_pitch = -*src_pitch;
}
} else {
if (src_height < 0) {
*src_pitch = -*src_pitch;
}
}
return true;
}
// Adjust boundaries when using DrawImage function in bitmap or texture.
bool AdjustDrawImageBoundary(int* src_x, int* src_y,
int* src_width, int* src_height,
int src_bmp_level,
int src_bmp_width, int src_bmp_height,
int* dest_x, int* dest_y,
int* dest_width, int* dest_height,
int dest_bmp_level,
int dest_bmp_width, int dest_bmp_height) {
// if src or dest rectangle is out of boundaries, do nothing.
if ((*src_x < 0 && *src_x + *src_width <= 0) ||
(*src_y < 0 && *src_y + *src_height <= 0) ||
(*dest_x < 0 && *dest_x + *dest_width <= 0) ||
(*dest_y < 0 && *dest_y + *dest_height <= 0) ||
(*src_x >= src_bmp_width &&
*src_x + *src_width >= src_bmp_width - 1) ||
(*src_y >= src_bmp_height &&
*src_y + *src_height >= src_bmp_height - 1) ||
(*dest_x >= dest_bmp_width &&
*dest_x + *dest_width >= dest_bmp_width - 1) ||
(*dest_y >= dest_bmp_height &&
*dest_y + *dest_height >= dest_bmp_height - 1) ||
(src_bmp_level < 0) || (dest_bmp_level < 0))
return false;
int src_mip_width = static_cast<int>(
image::ComputeMipDimension(src_bmp_level, src_bmp_width));
int src_mip_height = static_cast<int>(
image::ComputeMipDimension(src_bmp_level, src_bmp_height));
int dest_mip_width = static_cast<int>(
image::ComputeMipDimension(dest_bmp_level, dest_bmp_width));
int dest_mip_height = static_cast<int>(
image::ComputeMipDimension(dest_bmp_level, dest_bmp_height));
// if start points are negative.
// check whether src_x is negative.
if (!AdjustDrawImageBoundHelper(src_x, dest_x,
src_width, dest_width, src_mip_width))
return false;
// check whether dest_x is negative.
if (!AdjustDrawImageBoundHelper(dest_x, src_x,
dest_width, src_width, dest_mip_width))
return false;
// check whether src_y is negative.
if (!AdjustDrawImageBoundHelper(src_y, dest_y,
src_height, dest_height, src_mip_height))
return false;
// check whether dest_y is negative.
if (!AdjustDrawImageBoundHelper(dest_y, src_y,
dest_height, src_height, dest_mip_height))
return false;
// check any width or height becomes negative after adjustment.
if (*src_width == 0 || *src_height == 0 ||
*dest_width == 0 || *dest_height == 0) {
return false;
}
return true;
}
void LanczosScale(Texture::Format format, const void* src, int src_pitch,
int src_x, int src_y,
int src_width, int src_height,
void* dest, int dest_pitch,
int dest_x, int dest_y,
int dest_width, int dest_height,
int components) {
switch (format) {
case Texture::ARGB8:
case Texture::XRGB8:
TypedLanczosScale<uint8, UInt8ToFloat, Safe8Round>(
src, src_pitch, src_x, src_y, src_width, src_height,
dest, dest_pitch, dest_x, dest_y, dest_width, dest_height,
components);
break;
case Texture::ABGR16F:
TypedLanczosScale<uint16, HalfToFloat, FloatToHalf>(
src, src_pitch, src_x, src_y, src_width, src_height,
dest, dest_pitch, dest_x, dest_y, dest_width, dest_height,
components);
break;
case Texture::ABGR32F:
case Texture::R32F:
TypedLanczosScale<float, FloatToFloat, FloatToFloat>(
src, src_pitch, src_x, src_y, src_width, src_height,
dest, dest_pitch, dest_x, dest_y, dest_width, dest_height,
components);
break;
default:
DLOG(ERROR) << "Mip-map generation not supported for format: " << format;
return;
}
}
bool GenerateMipmap(unsigned int src_width,
unsigned int src_height,
Texture::Format format,
const void *src_data,
int src_pitch,
void *dst_data,
int dst_pitch) {
unsigned int components = GetNumComponentsForFormat(format);
if (components == 0) {
DLOG(ERROR) << "Mip-map generation not supported for format: " << format;
return false;
}
switch (format) {
case Texture::ARGB8:
case Texture::XRGB8:
GenerateMip<uint8, uint32, uint64,
UInt8ToUInt32, UInt32ToUInt8,
UInt8ToUInt64, UInt64ToUInt8>(
components, src_width, src_height, src_data, src_pitch,
dst_data, dst_pitch);
break;
case Texture::ABGR16F:
GenerateMip<uint16, float, double,
HalfToFloat, FloatToHalf,
HalfToDouble, DoubleToHalf>(
components, src_width, src_height, src_data, src_pitch,
dst_data, dst_pitch);
break;
case Texture::ABGR32F:
case Texture::R32F:
GenerateMip<float, float, double,
FloatToFloat, FloatToFloat,
FloatToDouble, DoubleToFloat>(
components, src_width, src_height, src_data, src_pitch,
dst_data, dst_pitch);
break;
default:
DLOG(ERROR) << "Mip-map generation not supported for format: " << format;
return false;
}
return true;
}
ImageFileType GetFileTypeFromFilename(const char *filename) {
// Convert the filename to lower case for matching.
// NOTE: Surprisingly, "tolower" is not in the std namespace.
String name(filename);
std::transform(name.begin(), name.end(), name.begin(), ::tolower);
// Dispatch loading functions based on filename extensions.
String::size_type i = name.rfind(".");
if (i == String::npos) {
DLOG(INFO) << "Could not detect file type for image \""
<< filename << "\": no extension.";
return UNKNOWN;
}
String extension = name.substr(i);
if (extension == ".tga") {
DLOG(INFO) << "Bitmap Found a TGA file : " << filename;
return TGA;
} else if (extension == ".dds") {
DLOG(INFO) << "Bitmap Found a DDS file : " << filename;
return DDS;
} else if (extension == ".png") {
DLOG(INFO) << "Bitmap Found a PNG file : " << filename;
return PNG;
} else if (extension == ".jpg" ||
extension == ".jpeg" ||
extension == ".jpe") {
DLOG(INFO) << "Bitmap Found a JPEG file : " << filename;
return JPEG;
} else {
return UNKNOWN;
}
}
namespace {
struct MimeTypeToFileType {
const char *mime_type;
ImageFileType file_type;
};
const MimeTypeToFileType mime_type_map[] = {
{"image/png", PNG},
{"image/jpeg", JPEG},
// No official MIME type for TGA or DDS.
};
} // anonymous namespace
ImageFileType GetFileTypeFromMimeType(const char *mime_type) {
for (unsigned int i = 0u; i < arraysize(mime_type_map); ++i) {
if (!strcmp(mime_type, mime_type_map[i].mime_type))
return mime_type_map[i].file_type;
}
return UNKNOWN;
}
void XYZToXYZA(uint8 *image_data, int pixel_count) {
// We do this pixel by pixel, starting from the end to avoid overlapping
// problems.
for (int i = pixel_count - 1; i >= 0; --i) {
image_data[i * 4 + 3] = 0xff;
image_data[i * 4 + 2] = image_data[i * 3 + 2];
image_data[i * 4 + 1] = image_data[i * 3 + 1];
image_data[i * 4 + 0] = image_data[i * 3 + 0];
}
}
void RGBAToBGRA(uint8 *image_data, int pixel_count) {
for (int i = 0; i < pixel_count; ++i) {
uint8 c = image_data[i * 4 + 0];
image_data[i * 4 + 0] = image_data[i * 4 + 2];
image_data[i * 4 + 2] = c;
}
}
} // namespace image
} // namespace o3d
|