summaryrefslogtreecommitdiffstats
path: root/remoting/codec/audio_encoder_opus_unittest.cc
blob: b67e28ab3efbfb5ddcc9f3211ee868055a8e409b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// MSVC++ requires this to get M_PI.
#define _USE_MATH_DEFINES

#include "remoting/codec/audio_encoder_opus.h"

#include <math.h>
#include <stddef.h>
#include <stdint.h>

#include <utility>

#include "base/logging.h"
#include "remoting/codec/audio_decoder_opus.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace remoting {

namespace {

// Maximum value that can be encoded in a 16-bit signed sample.
const int kMaxSampleValue = 32767;

const int kChannels = 2;

// Phase shift between left and right channels.
const double kChannelPhaseShift = 2 * M_PI / 3;

// The sampling rate that OPUS uses internally and that we expect to get
// from the decoder.
const AudioPacket_SamplingRate kDefaultSamplingRate =
    AudioPacket::SAMPLING_RATE_48000;

// Maximum latency expected from the encoder.
const int kMaxLatencyMs = 40;

// When verifying results ignore the first 1k samples. This is necessary because
// it takes some time for the codec to adjust for the input signal.
const int kSkippedFirstSamples = 1000;

// Maximum standard deviation of the difference between original and decoded
// signals as a proportion of kMaxSampleValue. For two unrelated signals this
// difference will be close to 1.0, even for signals that differ only slightly.
// The value is chosen such that all the tests pass normally, but fail with
// small changes (e.g. one sample shift between signals).
const double kMaxSignalDeviation = 0.1;

}  // namespace

class OpusAudioEncoderTest : public testing::Test {
 public:
  // Return test signal value at the specified position |pos|. |frequency_hz|
  // defines frequency of the signal. |channel| is used to calculate phase shift
  // of the signal, so that different signals are generated for left and right
  // channels.
  static int16_t GetSampleValue(AudioPacket::SamplingRate rate,
                                double frequency_hz,
                                double pos,
                                int channel) {
    double angle = pos * 2 * M_PI * frequency_hz / rate +
        kChannelPhaseShift * channel;
    return static_cast<int>(sin(angle) * kMaxSampleValue + 0.5);
  }

  // Creates  audio packet filled with a test signal with the specified
  // |frequency_hz|.
  scoped_ptr<AudioPacket> CreatePacket(
      int samples,
      AudioPacket::SamplingRate rate,
      double frequency_hz,
      int pos) {
    std::vector<int16_t> data(samples * kChannels);
    for (int i = 0; i < samples; ++i) {
      data[i * kChannels] = GetSampleValue(rate, frequency_hz, i + pos, 0);
      data[i * kChannels + 1] = GetSampleValue(rate, frequency_hz, i + pos, 1);
    }

    scoped_ptr<AudioPacket> packet(new AudioPacket());
    packet->add_data(reinterpret_cast<char*>(&(data[0])),
                     samples * kChannels * sizeof(int16_t));
    packet->set_encoding(AudioPacket::ENCODING_RAW);
    packet->set_sampling_rate(rate);
    packet->set_bytes_per_sample(AudioPacket::BYTES_PER_SAMPLE_2);
    packet->set_channels(AudioPacket::CHANNELS_STEREO);
    return packet;
  }

  // Decoded data is normally shifted in phase relative to the original signal.
  // This function returns the approximate shift in samples by finding the first
  // point when signal goes from negative to positive.
  double EstimateSignalShift(const std::vector<int16_t>& received_data) {
    for (size_t i = kSkippedFirstSamples;
         i < received_data.size() / kChannels - 1; i++) {
      int16_t this_sample = received_data[i * kChannels];
      int16_t next_sample = received_data[(i + 1) * kChannels];
      if (this_sample < 0 && next_sample > 0) {
        return
            i + static_cast<double>(-this_sample) / (next_sample - this_sample);
      }
    }
    return 0;
  }

  // Compares decoded signal with the test signal that was encoded. It estimates
  // phase shift from the original signal, then calculates standard deviation of
  // the difference between original and decoded signals.
  void ValidateReceivedData(int samples,
                            AudioPacket::SamplingRate rate,
                            double frequency_hz,
                            const std::vector<int16_t>& received_data) {
    double shift = EstimateSignalShift(received_data);
    double diff_sqare_sum = 0;
    for (size_t i = kSkippedFirstSamples;
         i < received_data.size() / kChannels; i++) {
      double d = received_data[i * kChannels] -
          GetSampleValue(rate, frequency_hz, i - shift, 0);
      diff_sqare_sum += d * d;
      d = received_data[i * kChannels + 1] -
          GetSampleValue(rate, frequency_hz, i - shift, 1);
      diff_sqare_sum += d * d;
    }
    double deviation = sqrt(diff_sqare_sum / received_data.size())
         / kMaxSampleValue;
    LOG(ERROR) << "Decoded signal deviation: " << deviation;
    EXPECT_LE(deviation, kMaxSignalDeviation);
  }

  void TestEncodeDecode(int packet_size,
                          double frequency_hz,
                          AudioPacket::SamplingRate rate) {
    const int kTotalTestSamples = 24000;

    encoder_.reset(new AudioEncoderOpus());
    decoder_.reset(new AudioDecoderOpus());

    std::vector<int16_t> received_data;
    int pos = 0;
    for (; pos < kTotalTestSamples; pos += packet_size) {
        scoped_ptr<AudioPacket> source_packet =
            CreatePacket(packet_size, rate, frequency_hz, pos);
        scoped_ptr<AudioPacket> encoded =
            encoder_->Encode(std::move(source_packet));
        if (encoded.get()) {
          scoped_ptr<AudioPacket> decoded =
              decoder_->Decode(std::move(encoded));
          EXPECT_EQ(kDefaultSamplingRate, decoded->sampling_rate());
          for (int i = 0; i < decoded->data_size(); ++i) {
            const int16_t* data =
                reinterpret_cast<const int16_t*>(decoded->data(i).data());
            received_data.insert(
                received_data.end(), data,
                data + decoded->data(i).size() / sizeof(int16_t));
          }
        }
    }

    // Verify that at most kMaxLatencyMs worth of samples is buffered inside
    // |encoder_| and |decoder_|.
    EXPECT_GE(static_cast<int>(received_data.size()) / kChannels,
              pos - rate * kMaxLatencyMs / 1000);

    ValidateReceivedData(packet_size, kDefaultSamplingRate,
                         frequency_hz, received_data);
  }

 protected:
  scoped_ptr<AudioEncoderOpus> encoder_;
  scoped_ptr<AudioDecoderOpus> decoder_;
};

TEST_F(OpusAudioEncoderTest, CreateAndDestroy) {
}

TEST_F(OpusAudioEncoderTest, NoResampling) {
  TestEncodeDecode(2000, 50, AudioPacket::SAMPLING_RATE_48000);
  TestEncodeDecode(2000, 3000, AudioPacket::SAMPLING_RATE_48000);
  TestEncodeDecode(2000, 10000, AudioPacket::SAMPLING_RATE_48000);
}

TEST_F(OpusAudioEncoderTest, Resampling) {
  TestEncodeDecode(2000, 50, AudioPacket::SAMPLING_RATE_44100);
  TestEncodeDecode(2000, 3000, AudioPacket::SAMPLING_RATE_44100);
  TestEncodeDecode(2000, 10000, AudioPacket::SAMPLING_RATE_44100);
}

TEST_F(OpusAudioEncoderTest, BufferSizeAndResampling) {
  TestEncodeDecode(500, 3000, AudioPacket::SAMPLING_RATE_44100);
  TestEncodeDecode(1000, 3000, AudioPacket::SAMPLING_RATE_44100);
  TestEncodeDecode(5000, 3000, AudioPacket::SAMPLING_RATE_44100);
}

}  // namespace remoting