summaryrefslogtreecommitdiffstats
path: root/sandbox/linux/seccomp-bpf/sandbox_bpf_unittest.cc
blob: b5bfd357a34cc592589d6bc5fc38c6fe02d7b4cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <errno.h>
#include <pthread.h>
#include <sched.h>
#include <sys/prctl.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/utsname.h>
#include <unistd.h>

#if defined(ANDROID)
// Work-around for buggy headers in Android's NDK
#define __user
#endif
#include <linux/futex.h>

#include <ostream>

#include "base/bind.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/memory/scoped_ptr.h"
#include "build/build_config.h"
#include "sandbox/linux/seccomp-bpf/bpf_tests.h"
#include "sandbox/linux/seccomp-bpf/syscall.h"
#include "sandbox/linux/seccomp-bpf/trap.h"
#include "sandbox/linux/seccomp-bpf/verifier.h"
#include "sandbox/linux/services/broker_process.h"
#include "sandbox/linux/services/linux_syscalls.h"
#include "sandbox/linux/tests/unit_tests.h"
#include "testing/gtest/include/gtest/gtest.h"

// Workaround for Android's prctl.h file.
#ifndef PR_GET_ENDIAN
#define PR_GET_ENDIAN 19
#endif
#ifndef PR_CAPBSET_READ
#define PR_CAPBSET_READ 23
#define PR_CAPBSET_DROP 24
#endif

namespace sandbox {

namespace {

const int kExpectedReturnValue = 42;
const char kSandboxDebuggingEnv[] = "CHROME_SANDBOX_DEBUGGING";

// This test should execute no matter whether we have kernel support. So,
// we make it a TEST() instead of a BPF_TEST().
TEST(SandboxBPF, DISABLE_ON_TSAN(CallSupports)) {
  // We check that we don't crash, but it's ok if the kernel doesn't
  // support it.
  bool seccomp_bpf_supported =
      SandboxBPF::SupportsSeccompSandbox(-1) == SandboxBPF::STATUS_AVAILABLE;
  // We want to log whether or not seccomp BPF is actually supported
  // since actual test coverage depends on it.
  RecordProperty("SeccompBPFSupported",
                 seccomp_bpf_supported ? "true." : "false.");
  std::cout << "Seccomp BPF supported: "
            << (seccomp_bpf_supported ? "true." : "false.") << "\n";
  RecordProperty("PointerSize", sizeof(void*));
  std::cout << "Pointer size: " << sizeof(void*) << "\n";
}

SANDBOX_TEST(SandboxBPF, DISABLE_ON_TSAN(CallSupportsTwice)) {
  SandboxBPF::SupportsSeccompSandbox(-1);
  SandboxBPF::SupportsSeccompSandbox(-1);
}

// BPF_TEST does a lot of the boiler-plate code around setting up a
// policy and optional passing data between the caller, the policy and
// any Trap() handlers. This is great for writing short and concise tests,
// and it helps us accidentally forgetting any of the crucial steps in
// setting up the sandbox. But it wouldn't hurt to have at least one test
// that explicitly walks through all these steps.

intptr_t FakeGetPid(const struct arch_seccomp_data& args, void* aux) {
  BPF_ASSERT(aux);
  pid_t* pid_ptr = static_cast<pid_t*>(aux);
  return (*pid_ptr)++;
}

class VerboseAPITestingPolicy : public SandboxBPFPolicy {
 public:
  VerboseAPITestingPolicy(pid_t* pid_ptr) : pid_ptr_(pid_ptr) {}

  virtual ErrorCode EvaluateSyscall(SandboxBPF* sandbox,
                                    int sysno) const OVERRIDE {
    DCHECK(SandboxBPF::IsValidSyscallNumber(sysno));
    if (sysno == __NR_getpid) {
      return sandbox->Trap(FakeGetPid, pid_ptr_);
    }
    return ErrorCode(ErrorCode::ERR_ALLOWED);
  }

 private:
  pid_t* pid_ptr_;
  DISALLOW_COPY_AND_ASSIGN(VerboseAPITestingPolicy);
};

SANDBOX_TEST(SandboxBPF, DISABLE_ON_TSAN(VerboseAPITesting)) {
  if (SandboxBPF::SupportsSeccompSandbox(-1) ==
      sandbox::SandboxBPF::STATUS_AVAILABLE) {
    pid_t pid;

    SandboxBPF sandbox;
    sandbox.SetSandboxPolicy(new VerboseAPITestingPolicy(&pid));
    BPF_ASSERT(sandbox.StartSandbox(SandboxBPF::PROCESS_SINGLE_THREADED));

    BPF_ASSERT_EQ(0, pid);
    BPF_ASSERT_EQ(0, syscall(__NR_getpid));
    BPF_ASSERT_EQ(1, pid);
    BPF_ASSERT_EQ(1, syscall(__NR_getpid));
    BPF_ASSERT_EQ(2, pid);

    // N.B.: Any future call to getpid() would corrupt the stack.
    //       This is OK. The SANDBOX_TEST() macro is guaranteed to
    //       only ever call _exit() after the test completes.
  }
}

// A simple blacklist test

ErrorCode BlacklistNanosleepPolicy(SandboxBPF*, int sysno, void* aux) {
  // Since no type was specified in BPF_TEST as a fourth argument,
  // |aux| must be NULL here.
  BPF_ASSERT(NULL == aux);
  if (!SandboxBPF::IsValidSyscallNumber(sysno)) {
    // FIXME: we should really not have to do that in a trivial policy
    return ErrorCode(ENOSYS);
  }

  switch (sysno) {
    case __NR_nanosleep:
      return ErrorCode(EACCES);
    default:
      return ErrorCode(ErrorCode::ERR_ALLOWED);
  }
}

BPF_TEST(SandboxBPF, ApplyBasicBlacklistPolicy, BlacklistNanosleepPolicy) {
  // nanosleep() should be denied
  const struct timespec ts = {0, 0};
  errno = 0;
  BPF_ASSERT(syscall(__NR_nanosleep, &ts, NULL) == -1);
  BPF_ASSERT(errno == EACCES);
}
// Now do a simple whitelist test

ErrorCode WhitelistGetpidPolicy(SandboxBPF*, int sysno, void*) {
  switch (sysno) {
    case __NR_getpid:
    case __NR_exit_group:
      return ErrorCode(ErrorCode::ERR_ALLOWED);
    default:
      return ErrorCode(ENOMEM);
  }
}

BPF_TEST(SandboxBPF, ApplyBasicWhitelistPolicy, WhitelistGetpidPolicy) {
  // getpid() should be allowed
  errno = 0;
  BPF_ASSERT(syscall(__NR_getpid) > 0);
  BPF_ASSERT(errno == 0);

  // getpgid() should be denied
  BPF_ASSERT(getpgid(0) == -1);
  BPF_ASSERT(errno == ENOMEM);
}

// A simple blacklist policy, with a SIGSYS handler
intptr_t EnomemHandler(const struct arch_seccomp_data& args, void* aux) {
  // We also check that the auxiliary data is correct
  SANDBOX_ASSERT(aux);
  *(static_cast<int*>(aux)) = kExpectedReturnValue;
  return -ENOMEM;
}

ErrorCode BlacklistNanosleepPolicySigsys(SandboxBPF* sandbox,
                                         int sysno,
                                         int* aux) {
  if (!SandboxBPF::IsValidSyscallNumber(sysno)) {
    // FIXME: we should really not have to do that in a trivial policy
    return ErrorCode(ENOSYS);
  }

  switch (sysno) {
    case __NR_nanosleep:
      return sandbox->Trap(EnomemHandler, aux);
    default:
      return ErrorCode(ErrorCode::ERR_ALLOWED);
  }
}

BPF_TEST(SandboxBPF,
         BasicBlacklistWithSigsys,
         BlacklistNanosleepPolicySigsys,
         int /* (*BPF_AUX) */) {
  // getpid() should work properly
  errno = 0;
  BPF_ASSERT(syscall(__NR_getpid) > 0);
  BPF_ASSERT(errno == 0);

  // Our Auxiliary Data, should be reset by the signal handler
  *BPF_AUX = -1;
  const struct timespec ts = {0, 0};
  BPF_ASSERT(syscall(__NR_nanosleep, &ts, NULL) == -1);
  BPF_ASSERT(errno == ENOMEM);

  // We expect the signal handler to modify AuxData
  BPF_ASSERT(*BPF_AUX == kExpectedReturnValue);
}

// A simple test that verifies we can return arbitrary errno values.

ErrorCode ErrnoTestPolicy(SandboxBPF*, int sysno, void*) {
  if (!SandboxBPF::IsValidSyscallNumber(sysno)) {
    // FIXME: we should really not have to do that in a trivial policy
    return ErrorCode(ENOSYS);
  }

  switch (sysno) {
#if defined(ANDROID)
    case __NR_dup3:    // dup2 is a wrapper of dup3 in android
#else
    case __NR_dup2:
#endif
      // Pretend that dup2() worked, but don't actually do anything.
      return ErrorCode(0);
    case __NR_setuid:
#if defined(__NR_setuid32)
    case __NR_setuid32:
#endif
      // Return errno = 1.
      return ErrorCode(1);
    case __NR_setgid:
#if defined(__NR_setgid32)
    case __NR_setgid32:
#endif
      // Return maximum errno value (typically 4095).
      return ErrorCode(ErrorCode::ERR_MAX_ERRNO);
    case __NR_uname:
      // Return errno = 42;
      return ErrorCode(42);
    default:
      return ErrorCode(ErrorCode::ERR_ALLOWED);
  }
}

BPF_TEST(SandboxBPF, ErrnoTest, ErrnoTestPolicy) {
  // Verify that dup2() returns success, but doesn't actually run.
  int fds[4];
  BPF_ASSERT(pipe(fds) == 0);
  BPF_ASSERT(pipe(fds + 2) == 0);
  BPF_ASSERT(dup2(fds[2], fds[0]) == 0);
  char buf[1] = {};
  BPF_ASSERT(write(fds[1], "\x55", 1) == 1);
  BPF_ASSERT(write(fds[3], "\xAA", 1) == 1);
  BPF_ASSERT(read(fds[0], buf, 1) == 1);

  // If dup2() executed, we will read \xAA, but it dup2() has been turned
  // into a no-op by our policy, then we will read \x55.
  BPF_ASSERT(buf[0] == '\x55');

  // Verify that we can return the minimum and maximum errno values.
  errno = 0;
  BPF_ASSERT(setuid(0) == -1);
  BPF_ASSERT(errno == 1);

  // On Android, errno is only supported up to 255, otherwise errno
  // processing is skipped.
  // We work around this (crbug.com/181647).
  if (sandbox::IsAndroid() && setgid(0) != -1) {
    errno = 0;
    BPF_ASSERT(setgid(0) == -ErrorCode::ERR_MAX_ERRNO);
    BPF_ASSERT(errno == 0);
  } else {
    errno = 0;
    BPF_ASSERT(setgid(0) == -1);
    BPF_ASSERT(errno == ErrorCode::ERR_MAX_ERRNO);
  }

  // Finally, test an errno in between the minimum and maximum.
  errno = 0;
  struct utsname uts_buf;
  BPF_ASSERT(uname(&uts_buf) == -1);
  BPF_ASSERT(errno == 42);
}

// Testing the stacking of two sandboxes

class StackingPolicyPartOne : public SandboxBPFPolicy {
 public:
  StackingPolicyPartOne() {}
  virtual ErrorCode EvaluateSyscall(SandboxBPF* sandbox,
                                    int sysno) const OVERRIDE {
    DCHECK(SandboxBPF::IsValidSyscallNumber(sysno));
    switch (sysno) {
      case __NR_getppid:
        return sandbox->Cond(0,
                             ErrorCode::TP_32BIT,
                             ErrorCode::OP_EQUAL,
                             0,
                             ErrorCode(ErrorCode::ERR_ALLOWED),
                             ErrorCode(EPERM));
      default:
        return ErrorCode(ErrorCode::ERR_ALLOWED);
    }
  }

 private:
  DISALLOW_COPY_AND_ASSIGN(StackingPolicyPartOne);
};

class StackingPolicyPartTwo : public SandboxBPFPolicy {
 public:
  StackingPolicyPartTwo() {}
  virtual ErrorCode EvaluateSyscall(SandboxBPF* sandbox,
                                    int sysno) const OVERRIDE {
    DCHECK(SandboxBPF::IsValidSyscallNumber(sysno));
    switch (sysno) {
      case __NR_getppid:
        return sandbox->Cond(0,
                             ErrorCode::TP_32BIT,
                             ErrorCode::OP_EQUAL,
                             0,
                             ErrorCode(EINVAL),
                             ErrorCode(ErrorCode::ERR_ALLOWED));
      default:
        return ErrorCode(ErrorCode::ERR_ALLOWED);
    }
  }

 private:
  DISALLOW_COPY_AND_ASSIGN(StackingPolicyPartTwo);
};

BPF_TEST_C(SandboxBPF, StackingPolicy, StackingPolicyPartOne) {
  errno = 0;
  BPF_ASSERT(syscall(__NR_getppid, 0) > 0);
  BPF_ASSERT(errno == 0);

  BPF_ASSERT(syscall(__NR_getppid, 1) == -1);
  BPF_ASSERT(errno == EPERM);

  // Stack a second sandbox with its own policy. Verify that we can further
  // restrict filters, but we cannot relax existing filters.
  SandboxBPF sandbox;
  sandbox.SetSandboxPolicy(new StackingPolicyPartTwo());
  BPF_ASSERT(sandbox.StartSandbox(SandboxBPF::PROCESS_SINGLE_THREADED));

  errno = 0;
  BPF_ASSERT(syscall(__NR_getppid, 0) == -1);
  BPF_ASSERT(errno == EINVAL);

  BPF_ASSERT(syscall(__NR_getppid, 1) == -1);
  BPF_ASSERT(errno == EPERM);
}

// A more complex, but synthetic policy. This tests the correctness of the BPF
// program by iterating through all syscalls and checking for an errno that
// depends on the syscall number. Unlike the Verifier, this exercises the BPF
// interpreter in the kernel.

// We try to make sure we exercise optimizations in the BPF compiler. We make
// sure that the compiler can have an opportunity to coalesce syscalls with
// contiguous numbers and we also make sure that disjoint sets can return the
// same errno.
int SysnoToRandomErrno(int sysno) {
  // Small contiguous sets of 3 system calls return an errno equal to the
  // index of that set + 1 (so that we never return a NUL errno).
  return ((sysno & ~3) >> 2) % 29 + 1;
}

ErrorCode SyntheticPolicy(SandboxBPF*, int sysno, void*) {
  if (!SandboxBPF::IsValidSyscallNumber(sysno)) {
    // FIXME: we should really not have to do that in a trivial policy
    return ErrorCode(ENOSYS);
  }

  if (sysno == __NR_exit_group || sysno == __NR_write) {
    // exit_group() is special, we really need it to work.
    // write() is needed for BPF_ASSERT() to report a useful error message.
    return ErrorCode(ErrorCode::ERR_ALLOWED);
  } else {
    return ErrorCode(SysnoToRandomErrno(sysno));
  }
}

BPF_TEST(SandboxBPF, SyntheticPolicy, SyntheticPolicy) {
  // Ensure that that kExpectedReturnValue + syscallnumber + 1 does not int
  // overflow.
  BPF_ASSERT(std::numeric_limits<int>::max() - kExpectedReturnValue - 1 >=
             static_cast<int>(MAX_PUBLIC_SYSCALL));

  for (int syscall_number = static_cast<int>(MIN_SYSCALL);
       syscall_number <= static_cast<int>(MAX_PUBLIC_SYSCALL);
       ++syscall_number) {
    if (syscall_number == __NR_exit_group || syscall_number == __NR_write) {
      // exit_group() is special
      continue;
    }
    errno = 0;
    BPF_ASSERT(syscall(syscall_number) == -1);
    BPF_ASSERT(errno == SysnoToRandomErrno(syscall_number));
  }
}

#if defined(__arm__)
// A simple policy that tests whether ARM private system calls are supported
// by our BPF compiler and by the BPF interpreter in the kernel.

// For ARM private system calls, return an errno equal to their offset from
// MIN_PRIVATE_SYSCALL plus 1 (to avoid NUL errno).
int ArmPrivateSysnoToErrno(int sysno) {
  if (sysno >= static_cast<int>(MIN_PRIVATE_SYSCALL) &&
      sysno <= static_cast<int>(MAX_PRIVATE_SYSCALL)) {
    return (sysno - MIN_PRIVATE_SYSCALL) + 1;
  } else {
    return ENOSYS;
  }
}

ErrorCode ArmPrivatePolicy(SandboxBPF*, int sysno, void*) {
  if (!SandboxBPF::IsValidSyscallNumber(sysno)) {
    // FIXME: we should really not have to do that in a trivial policy.
    return ErrorCode(ENOSYS);
  }

  // Start from |__ARM_NR_set_tls + 1| so as not to mess with actual
  // ARM private system calls.
  if (sysno >= static_cast<int>(__ARM_NR_set_tls + 1) &&
      sysno <= static_cast<int>(MAX_PRIVATE_SYSCALL)) {
    return ErrorCode(ArmPrivateSysnoToErrno(sysno));
  } else {
    return ErrorCode(ErrorCode::ERR_ALLOWED);
  }
}

BPF_TEST(SandboxBPF, ArmPrivatePolicy, ArmPrivatePolicy) {
  for (int syscall_number = static_cast<int>(__ARM_NR_set_tls + 1);
       syscall_number <= static_cast<int>(MAX_PRIVATE_SYSCALL);
       ++syscall_number) {
    errno = 0;
    BPF_ASSERT(syscall(syscall_number) == -1);
    BPF_ASSERT(errno == ArmPrivateSysnoToErrno(syscall_number));
  }
}
#endif  // defined(__arm__)

intptr_t CountSyscalls(const struct arch_seccomp_data& args, void* aux) {
  // Count all invocations of our callback function.
  ++*reinterpret_cast<int*>(aux);

  // Verify that within the callback function all filtering is temporarily
  // disabled.
  BPF_ASSERT(syscall(__NR_getpid) > 1);

  // Verify that we can now call the underlying system call without causing
  // infinite recursion.
  return SandboxBPF::ForwardSyscall(args);
}

ErrorCode GreyListedPolicy(SandboxBPF* sandbox, int sysno, int* aux) {
  // The use of UnsafeTrap() causes us to print a warning message. This is
  // generally desirable, but it results in the unittest failing, as it doesn't
  // expect any messages on "stderr". So, temporarily disable messages. The
  // BPF_TEST() is guaranteed to turn messages back on, after the policy
  // function has completed.
  setenv(kSandboxDebuggingEnv, "t", 0);
  Die::SuppressInfoMessages(true);

  // Some system calls must always be allowed, if our policy wants to make
  // use of UnsafeTrap()
  if (sysno == __NR_rt_sigprocmask || sysno == __NR_rt_sigreturn
#if defined(__NR_sigprocmask)
      ||
      sysno == __NR_sigprocmask
#endif
#if defined(__NR_sigreturn)
      ||
      sysno == __NR_sigreturn
#endif
      ) {
    return ErrorCode(ErrorCode::ERR_ALLOWED);
  } else if (sysno == __NR_getpid) {
    // Disallow getpid()
    return ErrorCode(EPERM);
  } else if (SandboxBPF::IsValidSyscallNumber(sysno)) {
    // Allow (and count) all other system calls.
    return sandbox->UnsafeTrap(CountSyscalls, aux);
  } else {
    return ErrorCode(ENOSYS);
  }
}

BPF_TEST(SandboxBPF, GreyListedPolicy, GreyListedPolicy, int /* (*BPF_AUX) */) {
  BPF_ASSERT(syscall(__NR_getpid) == -1);
  BPF_ASSERT(errno == EPERM);
  BPF_ASSERT(*BPF_AUX == 0);
  BPF_ASSERT(syscall(__NR_geteuid) == syscall(__NR_getuid));
  BPF_ASSERT(*BPF_AUX == 2);
  char name[17] = {};
  BPF_ASSERT(!syscall(__NR_prctl,
                      PR_GET_NAME,
                      name,
                      (void*)NULL,
                      (void*)NULL,
                      (void*)NULL));
  BPF_ASSERT(*BPF_AUX == 3);
  BPF_ASSERT(*name);
}

SANDBOX_TEST(SandboxBPF, EnableUnsafeTrapsInSigSysHandler) {
  // Disabling warning messages that could confuse our test framework.
  setenv(kSandboxDebuggingEnv, "t", 0);
  Die::SuppressInfoMessages(true);

  unsetenv(kSandboxDebuggingEnv);
  SANDBOX_ASSERT(Trap::EnableUnsafeTrapsInSigSysHandler() == false);
  setenv(kSandboxDebuggingEnv, "", 1);
  SANDBOX_ASSERT(Trap::EnableUnsafeTrapsInSigSysHandler() == false);
  setenv(kSandboxDebuggingEnv, "t", 1);
  SANDBOX_ASSERT(Trap::EnableUnsafeTrapsInSigSysHandler() == true);
}

intptr_t PrctlHandler(const struct arch_seccomp_data& args, void*) {
  if (args.args[0] == PR_CAPBSET_DROP && static_cast<int>(args.args[1]) == -1) {
    // prctl(PR_CAPBSET_DROP, -1) is never valid. The kernel will always
    // return an error. But our handler allows this call.
    return 0;
  } else {
    return SandboxBPF::ForwardSyscall(args);
  }
}

ErrorCode PrctlPolicy(SandboxBPF* sandbox, int sysno, void* aux) {
  setenv(kSandboxDebuggingEnv, "t", 0);
  Die::SuppressInfoMessages(true);

  if (sysno == __NR_prctl) {
    // Handle prctl() inside an UnsafeTrap()
    return sandbox->UnsafeTrap(PrctlHandler, NULL);
  } else if (SandboxBPF::IsValidSyscallNumber(sysno)) {
    // Allow all other system calls.
    return ErrorCode(ErrorCode::ERR_ALLOWED);
  } else {
    return ErrorCode(ENOSYS);
  }
}

BPF_TEST(SandboxBPF, ForwardSyscall, PrctlPolicy) {
  // This call should never be allowed. But our policy will intercept it and
  // let it pass successfully.
  BPF_ASSERT(
      !prctl(PR_CAPBSET_DROP, -1, (void*)NULL, (void*)NULL, (void*)NULL));

  // Verify that the call will fail, if it makes it all the way to the kernel.
  BPF_ASSERT(
      prctl(PR_CAPBSET_DROP, -2, (void*)NULL, (void*)NULL, (void*)NULL) == -1);

  // And verify that other uses of prctl() work just fine.
  char name[17] = {};
  BPF_ASSERT(!syscall(__NR_prctl,
                      PR_GET_NAME,
                      name,
                      (void*)NULL,
                      (void*)NULL,
                      (void*)NULL));
  BPF_ASSERT(*name);

  // Finally, verify that system calls other than prctl() are completely
  // unaffected by our policy.
  struct utsname uts = {};
  BPF_ASSERT(!uname(&uts));
  BPF_ASSERT(!strcmp(uts.sysname, "Linux"));
}

intptr_t AllowRedirectedSyscall(const struct arch_seccomp_data& args, void*) {
  return SandboxBPF::ForwardSyscall(args);
}

ErrorCode RedirectAllSyscallsPolicy(SandboxBPF* sandbox, int sysno, void* aux) {
  setenv(kSandboxDebuggingEnv, "t", 0);
  Die::SuppressInfoMessages(true);

  // Some system calls must always be allowed, if our policy wants to make
  // use of UnsafeTrap()
  if (sysno == __NR_rt_sigprocmask || sysno == __NR_rt_sigreturn
#if defined(__NR_sigprocmask)
      ||
      sysno == __NR_sigprocmask
#endif
#if defined(__NR_sigreturn)
      ||
      sysno == __NR_sigreturn
#endif
      ) {
    return ErrorCode(ErrorCode::ERR_ALLOWED);
  } else if (SandboxBPF::IsValidSyscallNumber(sysno)) {
    return sandbox->UnsafeTrap(AllowRedirectedSyscall, aux);
  } else {
    return ErrorCode(ENOSYS);
  }
}

int bus_handler_fd_ = -1;

void SigBusHandler(int, siginfo_t* info, void* void_context) {
  BPF_ASSERT(write(bus_handler_fd_, "\x55", 1) == 1);
}

BPF_TEST(SandboxBPF, SigBus, RedirectAllSyscallsPolicy) {
  // We use the SIGBUS bit in the signal mask as a thread-local boolean
  // value in the implementation of UnsafeTrap(). This is obviously a bit
  // of a hack that could conceivably interfere with code that uses SIGBUS
  // in more traditional ways. This test verifies that basic functionality
  // of SIGBUS is not impacted, but it is certainly possibly to construe
  // more complex uses of signals where our use of the SIGBUS mask is not
  // 100% transparent. This is expected behavior.
  int fds[2];
  BPF_ASSERT(pipe(fds) == 0);
  bus_handler_fd_ = fds[1];
  struct sigaction sa = {};
  sa.sa_sigaction = SigBusHandler;
  sa.sa_flags = SA_SIGINFO;
  BPF_ASSERT(sigaction(SIGBUS, &sa, NULL) == 0);
  raise(SIGBUS);
  char c = '\000';
  BPF_ASSERT(read(fds[0], &c, 1) == 1);
  BPF_ASSERT(close(fds[0]) == 0);
  BPF_ASSERT(close(fds[1]) == 0);
  BPF_ASSERT(c == 0x55);
}

BPF_TEST(SandboxBPF, SigMask, RedirectAllSyscallsPolicy) {
  // Signal masks are potentially tricky to handle. For instance, if we
  // ever tried to update them from inside a Trap() or UnsafeTrap() handler,
  // the call to sigreturn() at the end of the signal handler would undo
  // all of our efforts. So, it makes sense to test that sigprocmask()
  // works, even if we have a policy in place that makes use of UnsafeTrap().
  // In practice, this works because we force sigprocmask() to be handled
  // entirely in the kernel.
  sigset_t mask0, mask1, mask2;

  // Call sigprocmask() to verify that SIGUSR2 wasn't blocked, if we didn't
  // change the mask (it shouldn't have been, as it isn't blocked by default
  // in POSIX).
  //
  // Use SIGUSR2 because Android seems to use SIGUSR1 for some purpose.
  sigemptyset(&mask0);
  BPF_ASSERT(!sigprocmask(SIG_BLOCK, &mask0, &mask1));
  BPF_ASSERT(!sigismember(&mask1, SIGUSR2));

  // Try again, and this time we verify that we can block it. This
  // requires a second call to sigprocmask().
  sigaddset(&mask0, SIGUSR2);
  BPF_ASSERT(!sigprocmask(SIG_BLOCK, &mask0, NULL));
  BPF_ASSERT(!sigprocmask(SIG_BLOCK, NULL, &mask2));
  BPF_ASSERT(sigismember(&mask2, SIGUSR2));
}

BPF_TEST(SandboxBPF, UnsafeTrapWithErrno, RedirectAllSyscallsPolicy) {
  // An UnsafeTrap() (or for that matter, a Trap()) has to report error
  // conditions by returning an exit code in the range -1..-4096. This
  // should happen automatically if using ForwardSyscall(). If the TrapFnc()
  // uses some other method to make system calls, then it is responsible
  // for computing the correct return code.
  // This test verifies that ForwardSyscall() does the correct thing.

  // The glibc system wrapper will ultimately set errno for us. So, from normal
  // userspace, all of this should be completely transparent.
  errno = 0;
  BPF_ASSERT(close(-1) == -1);
  BPF_ASSERT(errno == EBADF);

  // Explicitly avoid the glibc wrapper. This is not normally the way anybody
  // would make system calls, but it allows us to verify that we don't
  // accidentally mess with errno, when we shouldn't.
  errno = 0;
  struct arch_seccomp_data args = {};
  args.nr = __NR_close;
  args.args[0] = -1;
  BPF_ASSERT(SandboxBPF::ForwardSyscall(args) == -EBADF);
  BPF_ASSERT(errno == 0);
}

bool NoOpCallback() { return true; }

// Test a trap handler that makes use of a broker process to open().

class InitializedOpenBroker {
 public:
  InitializedOpenBroker() : initialized_(false) {
    std::vector<std::string> allowed_files;
    allowed_files.push_back("/proc/allowed");
    allowed_files.push_back("/proc/cpuinfo");

    broker_process_.reset(
        new BrokerProcess(EPERM, allowed_files, std::vector<std::string>()));
    BPF_ASSERT(broker_process() != NULL);
    BPF_ASSERT(broker_process_->Init(base::Bind(&NoOpCallback)));

    initialized_ = true;
  }
  bool initialized() { return initialized_; }
  class BrokerProcess* broker_process() { return broker_process_.get(); }

 private:
  bool initialized_;
  scoped_ptr<class BrokerProcess> broker_process_;
  DISALLOW_COPY_AND_ASSIGN(InitializedOpenBroker);
};

intptr_t BrokerOpenTrapHandler(const struct arch_seccomp_data& args,
                               void* aux) {
  BPF_ASSERT(aux);
  BrokerProcess* broker_process = static_cast<BrokerProcess*>(aux);
  switch (args.nr) {
#if defined(ANDROID)
    case __NR_faccessat:    // access is a wrapper of faccessat in android
      return broker_process->Access(reinterpret_cast<const char*>(args.args[1]),
                                    static_cast<int>(args.args[2]));
#else
    case __NR_access:
      return broker_process->Access(reinterpret_cast<const char*>(args.args[0]),
                                    static_cast<int>(args.args[1]));
#endif
    case __NR_open:
      return broker_process->Open(reinterpret_cast<const char*>(args.args[0]),
                                  static_cast<int>(args.args[1]));
    case __NR_openat:
      // We only call open() so if we arrive here, it's because glibc uses
      // the openat() system call.
      BPF_ASSERT(static_cast<int>(args.args[0]) == AT_FDCWD);
      return broker_process->Open(reinterpret_cast<const char*>(args.args[1]),
                                  static_cast<int>(args.args[2]));
    default:
      BPF_ASSERT(false);
      return -ENOSYS;
  }
}

ErrorCode DenyOpenPolicy(SandboxBPF* sandbox,
                         int sysno,
                         InitializedOpenBroker* iob) {
  if (!SandboxBPF::IsValidSyscallNumber(sysno)) {
    return ErrorCode(ENOSYS);
  }

  switch (sysno) {
#if defined(ANDROID)
    case __NR_faccessat:
#else
    case __NR_access:
#endif
    case __NR_open:
    case __NR_openat:
      // We get a InitializedOpenBroker class, but our trap handler wants
      // the BrokerProcess object.
      return ErrorCode(
          sandbox->Trap(BrokerOpenTrapHandler, iob->broker_process()));
    default:
      return ErrorCode(ErrorCode::ERR_ALLOWED);
  }
}

// We use a InitializedOpenBroker class, so that we can run unsandboxed
// code in its constructor, which is the only way to do so in a BPF_TEST.
BPF_TEST(SandboxBPF,
         UseOpenBroker,
         DenyOpenPolicy,
         InitializedOpenBroker /* (*BPF_AUX) */) {
  BPF_ASSERT(BPF_AUX->initialized());
  BrokerProcess* broker_process = BPF_AUX->broker_process();
  BPF_ASSERT(broker_process != NULL);

  // First, use the broker "manually"
  BPF_ASSERT(broker_process->Open("/proc/denied", O_RDONLY) == -EPERM);
  BPF_ASSERT(broker_process->Access("/proc/denied", R_OK) == -EPERM);
  BPF_ASSERT(broker_process->Open("/proc/allowed", O_RDONLY) == -ENOENT);
  BPF_ASSERT(broker_process->Access("/proc/allowed", R_OK) == -ENOENT);

  // Now use glibc's open() as an external library would.
  BPF_ASSERT(open("/proc/denied", O_RDONLY) == -1);
  BPF_ASSERT(errno == EPERM);

  BPF_ASSERT(open("/proc/allowed", O_RDONLY) == -1);
  BPF_ASSERT(errno == ENOENT);

  // Also test glibc's openat(), some versions of libc use it transparently
  // instead of open().
  BPF_ASSERT(openat(AT_FDCWD, "/proc/denied", O_RDONLY) == -1);
  BPF_ASSERT(errno == EPERM);

  BPF_ASSERT(openat(AT_FDCWD, "/proc/allowed", O_RDONLY) == -1);
  BPF_ASSERT(errno == ENOENT);

  // And test glibc's access().
  BPF_ASSERT(access("/proc/denied", R_OK) == -1);
  BPF_ASSERT(errno == EPERM);

  BPF_ASSERT(access("/proc/allowed", R_OK) == -1);
  BPF_ASSERT(errno == ENOENT);

  // This is also white listed and does exist.
  int cpu_info_access = access("/proc/cpuinfo", R_OK);
  BPF_ASSERT(cpu_info_access == 0);
  int cpu_info_fd = open("/proc/cpuinfo", O_RDONLY);
  BPF_ASSERT(cpu_info_fd >= 0);
  char buf[1024];
  BPF_ASSERT(read(cpu_info_fd, buf, sizeof(buf)) > 0);
}

// Simple test demonstrating how to use SandboxBPF::Cond()

ErrorCode SimpleCondTestPolicy(SandboxBPF* sandbox, int sysno, void*) {
  if (!SandboxBPF::IsValidSyscallNumber(sysno)) {
    // FIXME: we should really not have to do that in a trivial policy
    return ErrorCode(ENOSYS);
  }

  // We deliberately return unusual errno values upon failure, so that we
  // can uniquely test for these values. In a "real" policy, you would want
  // to return more traditional values.
  switch (sysno) {
#if defined(ANDROID)
    case __NR_openat:    // open is a wrapper of openat in android
      // Allow opening files for reading, but don't allow writing.
      COMPILE_ASSERT(O_RDONLY == 0, O_RDONLY_must_be_all_zero_bits);
      return sandbox->Cond(2,
                           ErrorCode::TP_32BIT,
                           ErrorCode::OP_HAS_ANY_BITS,
                           O_ACCMODE /* 0x3 */,
                           ErrorCode(EROFS),
                           ErrorCode(ErrorCode::ERR_ALLOWED));
#else
    case __NR_open:
      // Allow opening files for reading, but don't allow writing.
      COMPILE_ASSERT(O_RDONLY == 0, O_RDONLY_must_be_all_zero_bits);
      return sandbox->Cond(1,
                           ErrorCode::TP_32BIT,
                           ErrorCode::OP_HAS_ANY_BITS,
                           O_ACCMODE /* 0x3 */,
                           ErrorCode(EROFS),
                           ErrorCode(ErrorCode::ERR_ALLOWED));
#endif
    case __NR_prctl:
      // Allow prctl(PR_SET_DUMPABLE) and prctl(PR_GET_DUMPABLE), but
      // disallow everything else.
      return sandbox->Cond(0,
                           ErrorCode::TP_32BIT,
                           ErrorCode::OP_EQUAL,
                           PR_SET_DUMPABLE,
                           ErrorCode(ErrorCode::ERR_ALLOWED),
                           sandbox->Cond(0,
                                         ErrorCode::TP_32BIT,
                                         ErrorCode::OP_EQUAL,
                                         PR_GET_DUMPABLE,
                                         ErrorCode(ErrorCode::ERR_ALLOWED),
                                         ErrorCode(ENOMEM)));
    default:
      return ErrorCode(ErrorCode::ERR_ALLOWED);
  }
}

BPF_TEST(SandboxBPF, SimpleCondTest, SimpleCondTestPolicy) {
  int fd;
  BPF_ASSERT((fd = open("/proc/self/comm", O_RDWR)) == -1);
  BPF_ASSERT(errno == EROFS);
  BPF_ASSERT((fd = open("/proc/self/comm", O_RDONLY)) >= 0);
  close(fd);

  int ret;
  BPF_ASSERT((ret = prctl(PR_GET_DUMPABLE)) >= 0);
  BPF_ASSERT(prctl(PR_SET_DUMPABLE, 1 - ret) == 0);
  BPF_ASSERT(prctl(PR_GET_ENDIAN, &ret) == -1);
  BPF_ASSERT(errno == ENOMEM);
}

// This test exercises the SandboxBPF::Cond() method by building a complex
// tree of conditional equality operations. It then makes system calls and
// verifies that they return the values that we expected from our BPF
// program.
class EqualityStressTest {
 public:
  EqualityStressTest() {
    // We want a deterministic test
    srand(0);

    // Iterates over system call numbers and builds a random tree of
    // equality tests.
    // We are actually constructing a graph of ArgValue objects. This
    // graph will later be used to a) compute our sandbox policy, and
    // b) drive the code that verifies the output from the BPF program.
    COMPILE_ASSERT(
        kNumTestCases < (int)(MAX_PUBLIC_SYSCALL - MIN_SYSCALL - 10),
        num_test_cases_must_be_significantly_smaller_than_num_system_calls);
    for (int sysno = MIN_SYSCALL, end = kNumTestCases; sysno < end; ++sysno) {
      if (IsReservedSyscall(sysno)) {
        // Skip reserved system calls. This ensures that our test frame
        // work isn't impacted by the fact that we are overriding
        // a lot of different system calls.
        ++end;
        arg_values_.push_back(NULL);
      } else {
        arg_values_.push_back(
            RandomArgValue(rand() % kMaxArgs, 0, rand() % kMaxArgs));
      }
    }
  }

  ~EqualityStressTest() {
    for (std::vector<ArgValue*>::iterator iter = arg_values_.begin();
         iter != arg_values_.end();
         ++iter) {
      DeleteArgValue(*iter);
    }
  }

  ErrorCode Policy(SandboxBPF* sandbox, int sysno) {
    if (!SandboxBPF::IsValidSyscallNumber(sysno)) {
      // FIXME: we should really not have to do that in a trivial policy
      return ErrorCode(ENOSYS);
    } else if (sysno < 0 || sysno >= (int)arg_values_.size() ||
               IsReservedSyscall(sysno)) {
      // We only return ErrorCode values for the system calls that
      // are part of our test data. Every other system call remains
      // allowed.
      return ErrorCode(ErrorCode::ERR_ALLOWED);
    } else {
      // ToErrorCode() turns an ArgValue object into an ErrorCode that is
      // suitable for use by a sandbox policy.
      return ToErrorCode(sandbox, arg_values_[sysno]);
    }
  }

  void VerifyFilter() {
    // Iterate over all system calls. Skip the system calls that have
    // previously been determined as being reserved.
    for (int sysno = 0; sysno < (int)arg_values_.size(); ++sysno) {
      if (!arg_values_[sysno]) {
        // Skip reserved system calls.
        continue;
      }
      // Verify that system calls return the values that we expect them to
      // return. This involves passing different combinations of system call
      // parameters in order to exercise all possible code paths through the
      // BPF filter program.
      // We arbitrarily start by setting all six system call arguments to
      // zero. And we then recursive traverse our tree of ArgValues to
      // determine the necessary combinations of parameters.
      intptr_t args[6] = {};
      Verify(sysno, args, *arg_values_[sysno]);
    }
  }

 private:
  struct ArgValue {
    int argno;  // Argument number to inspect.
    int size;   // Number of test cases (must be > 0).
    struct Tests {
      uint32_t k_value;            // Value to compare syscall arg against.
      int err;                     // If non-zero, errno value to return.
      struct ArgValue* arg_value;  // Otherwise, more args needs inspecting.
    }* tests;
    int err;                     // If none of the tests passed, this is what
    struct ArgValue* arg_value;  // we'll return (this is the "else" branch).
  };

  bool IsReservedSyscall(int sysno) {
    // There are a handful of system calls that we should never use in our
    // test cases. These system calls are needed to allow the test framework
    // to run properly.
    // If we wanted to write fully generic code, there are more system calls
    // that could be listed here, and it is quite difficult to come up with a
    // truly comprehensive list. After all, we are deliberately making system
    // calls unavailable. In practice, we have a pretty good idea of the system
    // calls that will be made by this particular test. So, this small list is
    // sufficient. But if anybody copy'n'pasted this code for other uses, they
    // would have to review that the list.
    return sysno == __NR_read || sysno == __NR_write || sysno == __NR_exit ||
           sysno == __NR_exit_group || sysno == __NR_restart_syscall;
  }

  ArgValue* RandomArgValue(int argno, int args_mask, int remaining_args) {
    // Create a new ArgValue and fill it with random data. We use as bit mask
    // to keep track of the system call parameters that have previously been
    // set; this ensures that we won't accidentally define a contradictory
    // set of equality tests.
    struct ArgValue* arg_value = new ArgValue();
    args_mask |= 1 << argno;
    arg_value->argno = argno;

    // Apply some restrictions on just how complex our tests can be.
    // Otherwise, we end up with a BPF program that is too complicated for
    // the kernel to load.
    int fan_out = kMaxFanOut;
    if (remaining_args > 3) {
      fan_out = 1;
    } else if (remaining_args > 2) {
      fan_out = 2;
    }

    // Create a couple of different test cases with randomized values that
    // we want to use when comparing system call parameter number "argno".
    arg_value->size = rand() % fan_out + 1;
    arg_value->tests = new ArgValue::Tests[arg_value->size];

    uint32_t k_value = rand();
    for (int n = 0; n < arg_value->size; ++n) {
      // Ensure that we have unique values
      k_value += rand() % (RAND_MAX / (kMaxFanOut + 1)) + 1;

      // There are two possible types of nodes. Either this is a leaf node;
      // in that case, we have completed all the equality tests that we
      // wanted to perform, and we can now compute a random "errno" value that
      // we should return. Or this is part of a more complex boolean
      // expression; in that case, we have to recursively add tests for some
      // of system call parameters that we have not yet included in our
      // tests.
      arg_value->tests[n].k_value = k_value;
      if (!remaining_args || (rand() & 1)) {
        arg_value->tests[n].err = (rand() % 1000) + 1;
        arg_value->tests[n].arg_value = NULL;
      } else {
        arg_value->tests[n].err = 0;
        arg_value->tests[n].arg_value =
            RandomArgValue(RandomArg(args_mask), args_mask, remaining_args - 1);
      }
    }
    // Finally, we have to define what we should return if none of the
    // previous equality tests pass. Again, we can either deal with a leaf
    // node, or we can randomly add another couple of tests.
    if (!remaining_args || (rand() & 1)) {
      arg_value->err = (rand() % 1000) + 1;
      arg_value->arg_value = NULL;
    } else {
      arg_value->err = 0;
      arg_value->arg_value =
          RandomArgValue(RandomArg(args_mask), args_mask, remaining_args - 1);
    }
    // We have now built a new (sub-)tree of ArgValues defining a set of
    // boolean expressions for testing random system call arguments against
    // random values. Return this tree to our caller.
    return arg_value;
  }

  int RandomArg(int args_mask) {
    // Compute a random system call parameter number.
    int argno = rand() % kMaxArgs;

    // Make sure that this same parameter number has not previously been
    // used. Otherwise, we could end up with a test that is impossible to
    // satisfy (e.g. args[0] == 1 && args[0] == 2).
    while (args_mask & (1 << argno)) {
      argno = (argno + 1) % kMaxArgs;
    }
    return argno;
  }

  void DeleteArgValue(ArgValue* arg_value) {
    // Delete an ArgValue and all of its child nodes. This requires
    // recursively descending into the tree.
    if (arg_value) {
      if (arg_value->size) {
        for (int n = 0; n < arg_value->size; ++n) {
          if (!arg_value->tests[n].err) {
            DeleteArgValue(arg_value->tests[n].arg_value);
          }
        }
        delete[] arg_value->tests;
      }
      if (!arg_value->err) {
        DeleteArgValue(arg_value->arg_value);
      }
      delete arg_value;
    }
  }

  ErrorCode ToErrorCode(SandboxBPF* sandbox, ArgValue* arg_value) {
    // Compute the ErrorCode that should be returned, if none of our
    // tests succeed (i.e. the system call parameter doesn't match any
    // of the values in arg_value->tests[].k_value).
    ErrorCode err;
    if (arg_value->err) {
      // If this was a leaf node, return the errno value that we expect to
      // return from the BPF filter program.
      err = ErrorCode(arg_value->err);
    } else {
      // If this wasn't a leaf node yet, recursively descend into the rest
      // of the tree. This will end up adding a few more SandboxBPF::Cond()
      // tests to our ErrorCode.
      err = ToErrorCode(sandbox, arg_value->arg_value);
    }

    // Now, iterate over all the test cases that we want to compare against.
    // This builds a chain of SandboxBPF::Cond() tests
    // (aka "if ... elif ... elif ... elif ... fi")
    for (int n = arg_value->size; n-- > 0;) {
      ErrorCode matched;
      // Again, we distinguish between leaf nodes and subtrees.
      if (arg_value->tests[n].err) {
        matched = ErrorCode(arg_value->tests[n].err);
      } else {
        matched = ToErrorCode(sandbox, arg_value->tests[n].arg_value);
      }
      // For now, all of our tests are limited to 32bit.
      // We have separate tests that check the behavior of 32bit vs. 64bit
      // conditional expressions.
      err = sandbox->Cond(arg_value->argno,
                          ErrorCode::TP_32BIT,
                          ErrorCode::OP_EQUAL,
                          arg_value->tests[n].k_value,
                          matched,
                          err);
    }
    return err;
  }

  void Verify(int sysno, intptr_t* args, const ArgValue& arg_value) {
    uint32_t mismatched = 0;
    // Iterate over all the k_values in arg_value.tests[] and verify that
    // we see the expected return values from system calls, when we pass
    // the k_value as a parameter in a system call.
    for (int n = arg_value.size; n-- > 0;) {
      mismatched += arg_value.tests[n].k_value;
      args[arg_value.argno] = arg_value.tests[n].k_value;
      if (arg_value.tests[n].err) {
        VerifyErrno(sysno, args, arg_value.tests[n].err);
      } else {
        Verify(sysno, args, *arg_value.tests[n].arg_value);
      }
    }
  // Find a k_value that doesn't match any of the k_values in
  // arg_value.tests[]. In most cases, the current value of "mismatched"
  // would fit this requirement. But on the off-chance that it happens
  // to collide, we double-check.
  try_again:
    for (int n = arg_value.size; n-- > 0;) {
      if (mismatched == arg_value.tests[n].k_value) {
        ++mismatched;
        goto try_again;
      }
    }
    // Now verify that we see the expected return value from system calls,
    // if we pass a value that doesn't match any of the conditions (i.e. this
    // is testing the "else" clause of the conditions).
    args[arg_value.argno] = mismatched;
    if (arg_value.err) {
      VerifyErrno(sysno, args, arg_value.err);
    } else {
      Verify(sysno, args, *arg_value.arg_value);
    }
    // Reset args[arg_value.argno]. This is not technically needed, but it
    // makes it easier to reason about the correctness of our tests.
    args[arg_value.argno] = 0;
  }

  void VerifyErrno(int sysno, intptr_t* args, int err) {
    // We installed BPF filters that return different errno values
    // based on the system call number and the parameters that we decided
    // to pass in. Verify that this condition holds true.
    BPF_ASSERT(
        SandboxSyscall(
            sysno, args[0], args[1], args[2], args[3], args[4], args[5]) ==
        -err);
  }

  // Vector of ArgValue trees. These trees define all the possible boolean
  // expressions that we want to turn into a BPF filter program.
  std::vector<ArgValue*> arg_values_;

  // Don't increase these values. We are pushing the limits of the maximum
  // BPF program that the kernel will allow us to load. If the values are
  // increased too much, the test will start failing.
  static const int kNumTestCases = 40;
  static const int kMaxFanOut = 3;
  static const int kMaxArgs = 6;
};

ErrorCode EqualityStressTestPolicy(SandboxBPF* sandbox,
                                   int sysno,
                                   EqualityStressTest* aux) {
  DCHECK(aux);
  return aux->Policy(sandbox, sysno);
}

BPF_TEST(SandboxBPF,
         EqualityTests,
         EqualityStressTestPolicy,
         EqualityStressTest /* (*BPF_AUX) */) {
  BPF_AUX->VerifyFilter();
}

ErrorCode EqualityArgumentWidthPolicy(SandboxBPF* sandbox, int sysno, void*) {
  if (!SandboxBPF::IsValidSyscallNumber(sysno)) {
    // FIXME: we should really not have to do that in a trivial policy
    return ErrorCode(ENOSYS);
  } else if (sysno == __NR_uname) {
    return sandbox->Cond(
        0,
        ErrorCode::TP_32BIT,
        ErrorCode::OP_EQUAL,
        0,
        sandbox->Cond(1,
                      ErrorCode::TP_32BIT,
                      ErrorCode::OP_EQUAL,
                      0x55555555,
                      ErrorCode(1),
                      ErrorCode(2)),
        // The BPF compiler and the BPF interpreter in the kernel are
        // (mostly) agnostic of the host platform's word size. The compiler
        // will happily generate code that tests a 64bit value, and the
        // interpreter will happily perform this test.
        // But unless there is a kernel bug, there is no way for us to pass
        // in a 64bit quantity on a 32bit platform. The upper 32bits should
        // always be zero. So, this test should always evaluate as false on
        // 32bit systems.
        sandbox->Cond(1,
                      ErrorCode::TP_64BIT,
                      ErrorCode::OP_EQUAL,
                      0x55555555AAAAAAAAULL,
                      ErrorCode(1),
                      ErrorCode(2)));
  } else {
    return ErrorCode(ErrorCode::ERR_ALLOWED);
  }
}

BPF_TEST(SandboxBPF, EqualityArgumentWidth, EqualityArgumentWidthPolicy) {
  BPF_ASSERT(SandboxSyscall(__NR_uname, 0, 0x55555555) == -1);
  BPF_ASSERT(SandboxSyscall(__NR_uname, 0, 0xAAAAAAAA) == -2);
#if __SIZEOF_POINTER__ > 4
  // On 32bit machines, there is no way to pass a 64bit argument through the
  // syscall interface. So, we have to skip the part of the test that requires
  // 64bit arguments.
  BPF_ASSERT(SandboxSyscall(__NR_uname, 1, 0x55555555AAAAAAAAULL) == -1);
  BPF_ASSERT(SandboxSyscall(__NR_uname, 1, 0x5555555500000000ULL) == -2);
  BPF_ASSERT(SandboxSyscall(__NR_uname, 1, 0x5555555511111111ULL) == -2);
  BPF_ASSERT(SandboxSyscall(__NR_uname, 1, 0x11111111AAAAAAAAULL) == -2);
#else
  BPF_ASSERT(SandboxSyscall(__NR_uname, 1, 0x55555555) == -2);
#endif
}

#if __SIZEOF_POINTER__ > 4
// On 32bit machines, there is no way to pass a 64bit argument through the
// syscall interface. So, we have to skip the part of the test that requires
// 64bit arguments.
BPF_DEATH_TEST(SandboxBPF,
               EqualityArgumentUnallowed64bit,
               DEATH_MESSAGE("Unexpected 64bit argument detected"),
               EqualityArgumentWidthPolicy) {
  SandboxSyscall(__NR_uname, 0, 0x5555555555555555ULL);
}
#endif

ErrorCode EqualityWithNegativeArgumentsPolicy(SandboxBPF* sandbox,
                                              int sysno,
                                              void*) {
  if (!SandboxBPF::IsValidSyscallNumber(sysno)) {
    // FIXME: we should really not have to do that in a trivial policy
    return ErrorCode(ENOSYS);
  } else if (sysno == __NR_uname) {
    return sandbox->Cond(0,
                         ErrorCode::TP_32BIT,
                         ErrorCode::OP_EQUAL,
                         0xFFFFFFFF,
                         ErrorCode(1),
                         ErrorCode(2));
  } else {
    return ErrorCode(ErrorCode::ERR_ALLOWED);
  }
}

BPF_TEST(SandboxBPF,
         EqualityWithNegativeArguments,
         EqualityWithNegativeArgumentsPolicy) {
  BPF_ASSERT(SandboxSyscall(__NR_uname, 0xFFFFFFFF) == -1);
  BPF_ASSERT(SandboxSyscall(__NR_uname, -1) == -1);
  BPF_ASSERT(SandboxSyscall(__NR_uname, -1LL) == -1);
}

#if __SIZEOF_POINTER__ > 4
BPF_DEATH_TEST(SandboxBPF,
               EqualityWithNegative64bitArguments,
               DEATH_MESSAGE("Unexpected 64bit argument detected"),
               EqualityWithNegativeArgumentsPolicy) {
  // When expecting a 32bit system call argument, we look at the MSB of the
  // 64bit value and allow both "0" and "-1". But the latter is allowed only
  // iff the LSB was negative. So, this death test should error out.
  BPF_ASSERT(SandboxSyscall(__NR_uname, 0xFFFFFFFF00000000LL) == -1);
}
#endif
ErrorCode AllBitTestPolicy(SandboxBPF* sandbox, int sysno, void *) {
  // Test the OP_HAS_ALL_BITS conditional test operator with a couple of
  // different bitmasks. We try to find bitmasks that could conceivably
  // touch corner cases.
  // For all of these tests, we override the uname(). We can make use with
  // a single system call number, as we use the first system call argument to
  // select the different bit masks that we want to test against.
  if (!SandboxBPF::IsValidSyscallNumber(sysno)) {
    // FIXME: we should really not have to do that in a trivial policy
    return ErrorCode(ENOSYS);
  } else if (sysno == __NR_uname) {
    return sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 0,
           sandbox->Cond(1, ErrorCode::TP_32BIT, ErrorCode::OP_HAS_ALL_BITS,
                         0x0,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 1,
           sandbox->Cond(1, ErrorCode::TP_32BIT, ErrorCode::OP_HAS_ALL_BITS,
                         0x1,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 2,
           sandbox->Cond(1, ErrorCode::TP_32BIT, ErrorCode::OP_HAS_ALL_BITS,
                         0x3,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 3,
           sandbox->Cond(1, ErrorCode::TP_32BIT, ErrorCode::OP_HAS_ALL_BITS,
                         0x80000000,
                         ErrorCode(1), ErrorCode(0)),
           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 4,
           sandbox->Cond(1, ErrorCode::TP_64BIT, ErrorCode::OP_HAS_ALL_BITS,
                         0x0,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 5,
           sandbox->Cond(1, ErrorCode::TP_64BIT, ErrorCode::OP_HAS_ALL_BITS,
                         0x1,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 6,
           sandbox->Cond(1, ErrorCode::TP_64BIT, ErrorCode::OP_HAS_ALL_BITS,
                         0x3,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 7,
           sandbox->Cond(1, ErrorCode::TP_64BIT, ErrorCode::OP_HAS_ALL_BITS,
                         0x80000000,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 8,
           sandbox->Cond(1, ErrorCode::TP_64BIT, ErrorCode::OP_HAS_ALL_BITS,
                         0x100000000ULL,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 9,
           sandbox->Cond(1, ErrorCode::TP_64BIT, ErrorCode::OP_HAS_ALL_BITS,
                         0x300000000ULL,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 10,
           sandbox->Cond(1, ErrorCode::TP_64BIT, ErrorCode::OP_HAS_ALL_BITS,
                         0x100000001ULL,
                         ErrorCode(1), ErrorCode(0)),

                         sandbox->Kill("Invalid test case number"))))))))))));
  } else {
    return ErrorCode(ErrorCode::ERR_ALLOWED);
  }
}

// Define a macro that performs tests using our test policy.
// NOTE: Not all of the arguments in this macro are actually used!
//       They are here just to serve as documentation of the conditions
//       implemented in the test policy.
//       Most notably, "op" and "mask" are unused by the macro. If you want
//       to make changes to these values, you will have to edit the
//       test policy instead.
#define BITMASK_TEST(testcase, arg, op, mask, expected_value) \
  BPF_ASSERT(SandboxSyscall(__NR_uname, (testcase), (arg)) == (expected_value))

// Our uname() system call returns ErrorCode(1) for success and
// ErrorCode(0) for failure. SandboxSyscall() turns this into an
// exit code of -1 or 0.
#define EXPECT_FAILURE 0
#define EXPECT_SUCCESS -1

// A couple of our tests behave differently on 32bit and 64bit systems, as
// there is no way for a 32bit system call to pass in a 64bit system call
// argument "arg".
// We expect these tests to succeed on 64bit systems, but to tail on 32bit
// systems.
#define EXPT64_SUCCESS (sizeof(void*) > 4 ? EXPECT_SUCCESS : EXPECT_FAILURE)
BPF_TEST(SandboxBPF, AllBitTests, AllBitTestPolicy) {
  // 32bit test: all of 0x0 (should always be true)
  BITMASK_TEST( 0,                   0, ALLBITS32,          0, EXPECT_SUCCESS);
  BITMASK_TEST( 0,                   1, ALLBITS32,          0, EXPECT_SUCCESS);
  BITMASK_TEST( 0,                   3, ALLBITS32,          0, EXPECT_SUCCESS);
  BITMASK_TEST( 0,         0xFFFFFFFFU, ALLBITS32,          0, EXPECT_SUCCESS);
  BITMASK_TEST( 0,                -1LL, ALLBITS32,          0, EXPECT_SUCCESS);

  // 32bit test: all of 0x1
  BITMASK_TEST( 1,                   0, ALLBITS32,        0x1, EXPECT_FAILURE);
  BITMASK_TEST( 1,                   1, ALLBITS32,        0x1, EXPECT_SUCCESS);
  BITMASK_TEST( 1,                   2, ALLBITS32,        0x1, EXPECT_FAILURE);
  BITMASK_TEST( 1,                   3, ALLBITS32,        0x1, EXPECT_SUCCESS);

  // 32bit test: all of 0x3
  BITMASK_TEST( 2,                   0, ALLBITS32,        0x3, EXPECT_FAILURE);
  BITMASK_TEST( 2,                   1, ALLBITS32,        0x3, EXPECT_FAILURE);
  BITMASK_TEST( 2,                   2, ALLBITS32,        0x3, EXPECT_FAILURE);
  BITMASK_TEST( 2,                   3, ALLBITS32,        0x3, EXPECT_SUCCESS);
  BITMASK_TEST( 2,                   7, ALLBITS32,        0x3, EXPECT_SUCCESS);

  // 32bit test: all of 0x80000000
  BITMASK_TEST( 3,                   0, ALLBITS32, 0x80000000, EXPECT_FAILURE);
  BITMASK_TEST( 3,         0x40000000U, ALLBITS32, 0x80000000, EXPECT_FAILURE);
  BITMASK_TEST( 3,         0x80000000U, ALLBITS32, 0x80000000, EXPECT_SUCCESS);
  BITMASK_TEST( 3,         0xC0000000U, ALLBITS32, 0x80000000, EXPECT_SUCCESS);
  BITMASK_TEST( 3,       -0x80000000LL, ALLBITS32, 0x80000000, EXPECT_SUCCESS);

  // 64bit test: all of 0x0 (should always be true)
  BITMASK_TEST( 4,                   0, ALLBITS64,          0, EXPECT_SUCCESS);
  BITMASK_TEST( 4,                   1, ALLBITS64,          0, EXPECT_SUCCESS);
  BITMASK_TEST( 4,                   3, ALLBITS64,          0, EXPECT_SUCCESS);
  BITMASK_TEST( 4,         0xFFFFFFFFU, ALLBITS64,          0, EXPECT_SUCCESS);
  BITMASK_TEST( 4,       0x100000000LL, ALLBITS64,          0, EXPECT_SUCCESS);
  BITMASK_TEST( 4,       0x300000000LL, ALLBITS64,          0, EXPECT_SUCCESS);
  BITMASK_TEST( 4,0x8000000000000000LL, ALLBITS64,          0, EXPECT_SUCCESS);
  BITMASK_TEST( 4,                -1LL, ALLBITS64,          0, EXPECT_SUCCESS);

  // 64bit test: all of 0x1
  BITMASK_TEST( 5,                   0, ALLBITS64,          1, EXPECT_FAILURE);
  BITMASK_TEST( 5,                   1, ALLBITS64,          1, EXPECT_SUCCESS);
  BITMASK_TEST( 5,                   2, ALLBITS64,          1, EXPECT_FAILURE);
  BITMASK_TEST( 5,                   3, ALLBITS64,          1, EXPECT_SUCCESS);
  BITMASK_TEST( 5,       0x100000000LL, ALLBITS64,          1, EXPECT_FAILURE);
  BITMASK_TEST( 5,       0x100000001LL, ALLBITS64,          1, EXPECT_SUCCESS);
  BITMASK_TEST( 5,       0x100000002LL, ALLBITS64,          1, EXPECT_FAILURE);
  BITMASK_TEST( 5,       0x100000003LL, ALLBITS64,          1, EXPECT_SUCCESS);

  // 64bit test: all of 0x3
  BITMASK_TEST( 6,                   0, ALLBITS64,          3, EXPECT_FAILURE);
  BITMASK_TEST( 6,                   1, ALLBITS64,          3, EXPECT_FAILURE);
  BITMASK_TEST( 6,                   2, ALLBITS64,          3, EXPECT_FAILURE);
  BITMASK_TEST( 6,                   3, ALLBITS64,          3, EXPECT_SUCCESS);
  BITMASK_TEST( 6,                   7, ALLBITS64,          3, EXPECT_SUCCESS);
  BITMASK_TEST( 6,       0x100000000LL, ALLBITS64,          3, EXPECT_FAILURE);
  BITMASK_TEST( 6,       0x100000001LL, ALLBITS64,          3, EXPECT_FAILURE);
  BITMASK_TEST( 6,       0x100000002LL, ALLBITS64,          3, EXPECT_FAILURE);
  BITMASK_TEST( 6,       0x100000003LL, ALLBITS64,          3, EXPECT_SUCCESS);
  BITMASK_TEST( 6,       0x100000007LL, ALLBITS64,          3, EXPECT_SUCCESS);

  // 64bit test: all of 0x80000000
  BITMASK_TEST( 7,                   0, ALLBITS64, 0x80000000, EXPECT_FAILURE);
  BITMASK_TEST( 7,         0x40000000U, ALLBITS64, 0x80000000, EXPECT_FAILURE);
  BITMASK_TEST( 7,         0x80000000U, ALLBITS64, 0x80000000, EXPECT_SUCCESS);
  BITMASK_TEST( 7,         0xC0000000U, ALLBITS64, 0x80000000, EXPECT_SUCCESS);
  BITMASK_TEST( 7,       -0x80000000LL, ALLBITS64, 0x80000000, EXPECT_SUCCESS);
  BITMASK_TEST( 7,       0x100000000LL, ALLBITS64, 0x80000000, EXPECT_FAILURE);
  BITMASK_TEST( 7,       0x140000000LL, ALLBITS64, 0x80000000, EXPECT_FAILURE);
  BITMASK_TEST( 7,       0x180000000LL, ALLBITS64, 0x80000000, EXPECT_SUCCESS);
  BITMASK_TEST( 7,       0x1C0000000LL, ALLBITS64, 0x80000000, EXPECT_SUCCESS);
  BITMASK_TEST( 7,      -0x180000000LL, ALLBITS64, 0x80000000, EXPECT_SUCCESS);

  // 64bit test: all of 0x100000000
  BITMASK_TEST( 8,       0x000000000LL, ALLBITS64,0x100000000, EXPECT_FAILURE);
  BITMASK_TEST( 8,       0x100000000LL, ALLBITS64,0x100000000, EXPT64_SUCCESS);
  BITMASK_TEST( 8,       0x200000000LL, ALLBITS64,0x100000000, EXPECT_FAILURE);
  BITMASK_TEST( 8,       0x300000000LL, ALLBITS64,0x100000000, EXPT64_SUCCESS);
  BITMASK_TEST( 8,       0x000000001LL, ALLBITS64,0x100000000, EXPECT_FAILURE);
  BITMASK_TEST( 8,       0x100000001LL, ALLBITS64,0x100000000, EXPT64_SUCCESS);
  BITMASK_TEST( 8,       0x200000001LL, ALLBITS64,0x100000000, EXPECT_FAILURE);
  BITMASK_TEST( 8,       0x300000001LL, ALLBITS64,0x100000000, EXPT64_SUCCESS);

  // 64bit test: all of 0x300000000
  BITMASK_TEST( 9,       0x000000000LL, ALLBITS64,0x300000000, EXPECT_FAILURE);
  BITMASK_TEST( 9,       0x100000000LL, ALLBITS64,0x300000000, EXPECT_FAILURE);
  BITMASK_TEST( 9,       0x200000000LL, ALLBITS64,0x300000000, EXPECT_FAILURE);
  BITMASK_TEST( 9,       0x300000000LL, ALLBITS64,0x300000000, EXPT64_SUCCESS);
  BITMASK_TEST( 9,       0x700000000LL, ALLBITS64,0x300000000, EXPT64_SUCCESS);
  BITMASK_TEST( 9,       0x000000001LL, ALLBITS64,0x300000000, EXPECT_FAILURE);
  BITMASK_TEST( 9,       0x100000001LL, ALLBITS64,0x300000000, EXPECT_FAILURE);
  BITMASK_TEST( 9,       0x200000001LL, ALLBITS64,0x300000000, EXPECT_FAILURE);
  BITMASK_TEST( 9,       0x300000001LL, ALLBITS64,0x300000000, EXPT64_SUCCESS);
  BITMASK_TEST( 9,       0x700000001LL, ALLBITS64,0x300000000, EXPT64_SUCCESS);

  // 64bit test: all of 0x100000001
  BITMASK_TEST(10,       0x000000000LL, ALLBITS64,0x100000001, EXPECT_FAILURE);
  BITMASK_TEST(10,       0x000000001LL, ALLBITS64,0x100000001, EXPECT_FAILURE);
  BITMASK_TEST(10,       0x100000000LL, ALLBITS64,0x100000001, EXPECT_FAILURE);
  BITMASK_TEST(10,       0x100000001LL, ALLBITS64,0x100000001, EXPT64_SUCCESS);
  BITMASK_TEST(10,         0xFFFFFFFFU, ALLBITS64,0x100000001, EXPECT_FAILURE);
  BITMASK_TEST(10,                 -1L, ALLBITS64,0x100000001, EXPT64_SUCCESS);
}

ErrorCode AnyBitTestPolicy(SandboxBPF* sandbox, int sysno, void*) {
  // Test the OP_HAS_ANY_BITS conditional test operator with a couple of
  // different bitmasks. We try to find bitmasks that could conceivably
  // touch corner cases.
  // For all of these tests, we override the uname(). We can make use with
  // a single system call number, as we use the first system call argument to
  // select the different bit masks that we want to test against.
  if (!SandboxBPF::IsValidSyscallNumber(sysno)) {
    // FIXME: we should really not have to do that in a trivial policy
    return ErrorCode(ENOSYS);
  } else if (sysno == __NR_uname) {
    return sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 0,
           sandbox->Cond(1, ErrorCode::TP_32BIT, ErrorCode::OP_HAS_ANY_BITS,
                         0x0,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 1,
           sandbox->Cond(1, ErrorCode::TP_32BIT, ErrorCode::OP_HAS_ANY_BITS,
                         0x1,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 2,
           sandbox->Cond(1, ErrorCode::TP_32BIT, ErrorCode::OP_HAS_ANY_BITS,
                         0x3,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 3,
           sandbox->Cond(1, ErrorCode::TP_32BIT, ErrorCode::OP_HAS_ANY_BITS,
                         0x80000000,
                         ErrorCode(1), ErrorCode(0)),

           // All the following tests don't really make much sense on 32bit
           // systems. They will always evaluate as false.
           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 4,
           sandbox->Cond(1, ErrorCode::TP_64BIT, ErrorCode::OP_HAS_ANY_BITS,
                         0x0,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 5,
           sandbox->Cond(1, ErrorCode::TP_64BIT, ErrorCode::OP_HAS_ANY_BITS,
                         0x1,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 6,
           sandbox->Cond(1, ErrorCode::TP_64BIT, ErrorCode::OP_HAS_ANY_BITS,
                         0x3,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 7,
           sandbox->Cond(1, ErrorCode::TP_64BIT, ErrorCode::OP_HAS_ANY_BITS,
                         0x80000000,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 8,
           sandbox->Cond(1, ErrorCode::TP_64BIT, ErrorCode::OP_HAS_ANY_BITS,
                         0x100000000ULL,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 9,
           sandbox->Cond(1, ErrorCode::TP_64BIT, ErrorCode::OP_HAS_ANY_BITS,
                         0x300000000ULL,
                         ErrorCode(1), ErrorCode(0)),

           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL, 10,
           sandbox->Cond(1, ErrorCode::TP_64BIT, ErrorCode::OP_HAS_ANY_BITS,
                         0x100000001ULL,
                         ErrorCode(1), ErrorCode(0)),

                         sandbox->Kill("Invalid test case number"))))))))))));
  } else {
    return ErrorCode(ErrorCode::ERR_ALLOWED);
  }
}

BPF_TEST(SandboxBPF, AnyBitTests, AnyBitTestPolicy) {
  // 32bit test: any of 0x0 (should always be false)
  BITMASK_TEST( 0,                   0, ANYBITS32,        0x0, EXPECT_FAILURE);
  BITMASK_TEST( 0,                   1, ANYBITS32,        0x0, EXPECT_FAILURE);
  BITMASK_TEST( 0,                   3, ANYBITS32,        0x0, EXPECT_FAILURE);
  BITMASK_TEST( 0,         0xFFFFFFFFU, ANYBITS32,        0x0, EXPECT_FAILURE);
  BITMASK_TEST( 0,                -1LL, ANYBITS32,        0x0, EXPECT_FAILURE);

  // 32bit test: any of 0x1
  BITMASK_TEST( 1,                   0, ANYBITS32,        0x1, EXPECT_FAILURE);
  BITMASK_TEST( 1,                   1, ANYBITS32,        0x1, EXPECT_SUCCESS);
  BITMASK_TEST( 1,                   2, ANYBITS32,        0x1, EXPECT_FAILURE);
  BITMASK_TEST( 1,                   3, ANYBITS32,        0x1, EXPECT_SUCCESS);

  // 32bit test: any of 0x3
  BITMASK_TEST( 2,                   0, ANYBITS32,        0x3, EXPECT_FAILURE);
  BITMASK_TEST( 2,                   1, ANYBITS32,        0x3, EXPECT_SUCCESS);
  BITMASK_TEST( 2,                   2, ANYBITS32,        0x3, EXPECT_SUCCESS);
  BITMASK_TEST( 2,                   3, ANYBITS32,        0x3, EXPECT_SUCCESS);
  BITMASK_TEST( 2,                   7, ANYBITS32,        0x3, EXPECT_SUCCESS);

  // 32bit test: any of 0x80000000
  BITMASK_TEST( 3,                   0, ANYBITS32, 0x80000000, EXPECT_FAILURE);
  BITMASK_TEST( 3,         0x40000000U, ANYBITS32, 0x80000000, EXPECT_FAILURE);
  BITMASK_TEST( 3,         0x80000000U, ANYBITS32, 0x80000000, EXPECT_SUCCESS);
  BITMASK_TEST( 3,         0xC0000000U, ANYBITS32, 0x80000000, EXPECT_SUCCESS);
  BITMASK_TEST( 3,       -0x80000000LL, ANYBITS32, 0x80000000, EXPECT_SUCCESS);

  // 64bit test: any of 0x0 (should always be false)
  BITMASK_TEST( 4,                   0, ANYBITS64,        0x0, EXPECT_FAILURE);
  BITMASK_TEST( 4,                   1, ANYBITS64,        0x0, EXPECT_FAILURE);
  BITMASK_TEST( 4,                   3, ANYBITS64,        0x0, EXPECT_FAILURE);
  BITMASK_TEST( 4,         0xFFFFFFFFU, ANYBITS64,        0x0, EXPECT_FAILURE);
  BITMASK_TEST( 4,       0x100000000LL, ANYBITS64,        0x0, EXPECT_FAILURE);
  BITMASK_TEST( 4,       0x300000000LL, ANYBITS64,        0x0, EXPECT_FAILURE);
  BITMASK_TEST( 4,0x8000000000000000LL, ANYBITS64,        0x0, EXPECT_FAILURE);
  BITMASK_TEST( 4,                -1LL, ANYBITS64,        0x0, EXPECT_FAILURE);

  // 64bit test: any of 0x1
  BITMASK_TEST( 5,                   0, ANYBITS64,        0x1, EXPECT_FAILURE);
  BITMASK_TEST( 5,                   1, ANYBITS64,        0x1, EXPECT_SUCCESS);
  BITMASK_TEST( 5,                   2, ANYBITS64,        0x1, EXPECT_FAILURE);
  BITMASK_TEST( 5,                   3, ANYBITS64,        0x1, EXPECT_SUCCESS);
  BITMASK_TEST( 5,       0x100000001LL, ANYBITS64,        0x1, EXPECT_SUCCESS);
  BITMASK_TEST( 5,       0x100000000LL, ANYBITS64,        0x1, EXPECT_FAILURE);
  BITMASK_TEST( 5,       0x100000002LL, ANYBITS64,        0x1, EXPECT_FAILURE);
  BITMASK_TEST( 5,       0x100000003LL, ANYBITS64,        0x1, EXPECT_SUCCESS);

  // 64bit test: any of 0x3
  BITMASK_TEST( 6,                   0, ANYBITS64,        0x3, EXPECT_FAILURE);
  BITMASK_TEST( 6,                   1, ANYBITS64,        0x3, EXPECT_SUCCESS);
  BITMASK_TEST( 6,                   2, ANYBITS64,        0x3, EXPECT_SUCCESS);
  BITMASK_TEST( 6,                   3, ANYBITS64,        0x3, EXPECT_SUCCESS);
  BITMASK_TEST( 6,                   7, ANYBITS64,        0x3, EXPECT_SUCCESS);
  BITMASK_TEST( 6,       0x100000000LL, ANYBITS64,        0x3, EXPECT_FAILURE);
  BITMASK_TEST( 6,       0x100000001LL, ANYBITS64,        0x3, EXPECT_SUCCESS);
  BITMASK_TEST( 6,       0x100000002LL, ANYBITS64,        0x3, EXPECT_SUCCESS);
  BITMASK_TEST( 6,       0x100000003LL, ANYBITS64,        0x3, EXPECT_SUCCESS);
  BITMASK_TEST( 6,       0x100000007LL, ANYBITS64,        0x3, EXPECT_SUCCESS);

  // 64bit test: any of 0x80000000
  BITMASK_TEST( 7,                   0, ANYBITS64, 0x80000000, EXPECT_FAILURE);
  BITMASK_TEST( 7,         0x40000000U, ANYBITS64, 0x80000000, EXPECT_FAILURE);
  BITMASK_TEST( 7,         0x80000000U, ANYBITS64, 0x80000000, EXPECT_SUCCESS);
  BITMASK_TEST( 7,         0xC0000000U, ANYBITS64, 0x80000000, EXPECT_SUCCESS);
  BITMASK_TEST( 7,       -0x80000000LL, ANYBITS64, 0x80000000, EXPECT_SUCCESS);
  BITMASK_TEST( 7,       0x100000000LL, ANYBITS64, 0x80000000, EXPECT_FAILURE);
  BITMASK_TEST( 7,       0x140000000LL, ANYBITS64, 0x80000000, EXPECT_FAILURE);
  BITMASK_TEST( 7,       0x180000000LL, ANYBITS64, 0x80000000, EXPECT_SUCCESS);
  BITMASK_TEST( 7,       0x1C0000000LL, ANYBITS64, 0x80000000, EXPECT_SUCCESS);
  BITMASK_TEST( 7,      -0x180000000LL, ANYBITS64, 0x80000000, EXPECT_SUCCESS);

  // 64bit test: any of 0x100000000
  BITMASK_TEST( 8,       0x000000000LL, ANYBITS64,0x100000000, EXPECT_FAILURE);
  BITMASK_TEST( 8,       0x100000000LL, ANYBITS64,0x100000000, EXPT64_SUCCESS);
  BITMASK_TEST( 8,       0x200000000LL, ANYBITS64,0x100000000, EXPECT_FAILURE);
  BITMASK_TEST( 8,       0x300000000LL, ANYBITS64,0x100000000, EXPT64_SUCCESS);
  BITMASK_TEST( 8,       0x000000001LL, ANYBITS64,0x100000000, EXPECT_FAILURE);
  BITMASK_TEST( 8,       0x100000001LL, ANYBITS64,0x100000000, EXPT64_SUCCESS);
  BITMASK_TEST( 8,       0x200000001LL, ANYBITS64,0x100000000, EXPECT_FAILURE);
  BITMASK_TEST( 8,       0x300000001LL, ANYBITS64,0x100000000, EXPT64_SUCCESS);

  // 64bit test: any of 0x300000000
  BITMASK_TEST( 9,       0x000000000LL, ANYBITS64,0x300000000, EXPECT_FAILURE);
  BITMASK_TEST( 9,       0x100000000LL, ANYBITS64,0x300000000, EXPT64_SUCCESS);
  BITMASK_TEST( 9,       0x200000000LL, ANYBITS64,0x300000000, EXPT64_SUCCESS);
  BITMASK_TEST( 9,       0x300000000LL, ANYBITS64,0x300000000, EXPT64_SUCCESS);
  BITMASK_TEST( 9,       0x700000000LL, ANYBITS64,0x300000000, EXPT64_SUCCESS);
  BITMASK_TEST( 9,       0x000000001LL, ANYBITS64,0x300000000, EXPECT_FAILURE);
  BITMASK_TEST( 9,       0x100000001LL, ANYBITS64,0x300000000, EXPT64_SUCCESS);
  BITMASK_TEST( 9,       0x200000001LL, ANYBITS64,0x300000000, EXPT64_SUCCESS);
  BITMASK_TEST( 9,       0x300000001LL, ANYBITS64,0x300000000, EXPT64_SUCCESS);
  BITMASK_TEST( 9,       0x700000001LL, ANYBITS64,0x300000000, EXPT64_SUCCESS);

  // 64bit test: any of 0x100000001
  BITMASK_TEST( 10,      0x000000000LL, ANYBITS64,0x100000001, EXPECT_FAILURE);
  BITMASK_TEST( 10,      0x000000001LL, ANYBITS64,0x100000001, EXPECT_SUCCESS);
  BITMASK_TEST( 10,      0x100000000LL, ANYBITS64,0x100000001, EXPT64_SUCCESS);
  BITMASK_TEST( 10,      0x100000001LL, ANYBITS64,0x100000001, EXPECT_SUCCESS);
  BITMASK_TEST( 10,        0xFFFFFFFFU, ANYBITS64,0x100000001, EXPECT_SUCCESS);
  BITMASK_TEST( 10,                -1L, ANYBITS64,0x100000001, EXPECT_SUCCESS);
}

intptr_t PthreadTrapHandler(const struct arch_seccomp_data& args, void* aux) {
  if (args.args[0] != (CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | SIGCHLD)) {
    // We expect to get called for an attempt to fork(). No need to log that
    // call. But if we ever get called for anything else, we want to verbosely
    // print as much information as possible.
    const char* msg = (const char*)aux;
    printf(
        "Clone() was called with unexpected arguments\n"
        "  nr: %d\n"
        "  1: 0x%llX\n"
        "  2: 0x%llX\n"
        "  3: 0x%llX\n"
        "  4: 0x%llX\n"
        "  5: 0x%llX\n"
        "  6: 0x%llX\n"
        "%s\n",
        args.nr,
        (long long)args.args[0],
        (long long)args.args[1],
        (long long)args.args[2],
        (long long)args.args[3],
        (long long)args.args[4],
        (long long)args.args[5],
        msg);
  }
  return -EPERM;
}
ErrorCode PthreadPolicyEquality(SandboxBPF* sandbox, int sysno, void* aux) {
  // This policy allows creating threads with pthread_create(). But it
  // doesn't allow any other uses of clone(). Most notably, it does not
  // allow callers to implement fork() or vfork() by passing suitable flags
  // to the clone() system call.
  if (!SandboxBPF::IsValidSyscallNumber(sysno)) {
    // FIXME: we should really not have to do that in a trivial policy
    return ErrorCode(ENOSYS);
  } else if (sysno == __NR_clone) {
    // We have seen two different valid combinations of flags. Glibc
    // uses the more modern flags, sets the TLS from the call to clone(), and
    // uses futexes to monitor threads. Android's C run-time library, doesn't
    // do any of this, but it sets the obsolete (and no-op) CLONE_DETACHED.
    // More recent versions of Android don't set CLONE_DETACHED anymore, so
    // the last case accounts for that.
    // The following policy is very strict. It only allows the exact masks
    // that we have seen in known implementations. It is probably somewhat
    // stricter than what we would want to do.
    const uint64_t kGlibcCloneMask =
        CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND |
        CLONE_THREAD | CLONE_SYSVSEM | CLONE_SETTLS |
        CLONE_PARENT_SETTID | CLONE_CHILD_CLEARTID;
    const uint64_t kBaseAndroidCloneMask =
        CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND |
        CLONE_THREAD | CLONE_SYSVSEM;
    return sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL,
                         kGlibcCloneMask,
                         ErrorCode(ErrorCode::ERR_ALLOWED),
           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL,
                         kBaseAndroidCloneMask | CLONE_DETACHED,
                         ErrorCode(ErrorCode::ERR_ALLOWED),
           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_EQUAL,
                         kBaseAndroidCloneMask,
                         ErrorCode(ErrorCode::ERR_ALLOWED),
                         sandbox->Trap(PthreadTrapHandler, "Unknown mask"))));
  } else {
    return ErrorCode(ErrorCode::ERR_ALLOWED);
  }
}

ErrorCode PthreadPolicyBitMask(SandboxBPF* sandbox, int sysno, void* aux) {
  // This policy allows creating threads with pthread_create(). But it
  // doesn't allow any other uses of clone(). Most notably, it does not
  // allow callers to implement fork() or vfork() by passing suitable flags
  // to the clone() system call.
  if (!SandboxBPF::IsValidSyscallNumber(sysno)) {
    // FIXME: we should really not have to do that in a trivial policy
    return ErrorCode(ENOSYS);
  } else if (sysno == __NR_clone) {
    // We have seen two different valid combinations of flags. Glibc
    // uses the more modern flags, sets the TLS from the call to clone(), and
    // uses futexes to monitor threads. Android's C run-time library, doesn't
    // do any of this, but it sets the obsolete (and no-op) CLONE_DETACHED.
    // The following policy allows for either combination of flags, but it
    // is generally a little more conservative than strictly necessary. We
    // err on the side of rather safe than sorry.
    // Very noticeably though, we disallow fork() (which is often just a
    // wrapper around clone()).
    return sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_HAS_ANY_BITS,
                         ~uint32(CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|
                                 CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|
                                 CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID|
                                 CLONE_DETACHED),
                         sandbox->Trap(PthreadTrapHandler,
                                       "Unexpected CLONE_XXX flag found"),
           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_HAS_ALL_BITS,
                         CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|
                         CLONE_THREAD|CLONE_SYSVSEM,
           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_HAS_ALL_BITS,
                         CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID,
                         ErrorCode(ErrorCode::ERR_ALLOWED),
           sandbox->Cond(0, ErrorCode::TP_32BIT, ErrorCode::OP_HAS_ANY_BITS,
                         CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID,
                         sandbox->Trap(PthreadTrapHandler,
                                       "Must set either all or none of the TLS"
                                       " and futex bits in call to clone()"),
                         ErrorCode(ErrorCode::ERR_ALLOWED))),
                         sandbox->Trap(PthreadTrapHandler,
                                       "Missing mandatory CLONE_XXX flags "
                                       "when creating new thread")));
  } else {
    return ErrorCode(ErrorCode::ERR_ALLOWED);
  }
}

static void* ThreadFnc(void* arg) {
  ++*reinterpret_cast<int*>(arg);
  SandboxSyscall(__NR_futex, arg, FUTEX_WAKE, 1, 0, 0, 0);
  return NULL;
}

static void PthreadTest() {
  // Attempt to start a joinable thread. This should succeed.
  pthread_t thread;
  int thread_ran = 0;
  BPF_ASSERT(!pthread_create(&thread, NULL, ThreadFnc, &thread_ran));
  BPF_ASSERT(!pthread_join(thread, NULL));
  BPF_ASSERT(thread_ran);

  // Attempt to start a detached thread. This should succeed.
  thread_ran = 0;
  pthread_attr_t attr;
  BPF_ASSERT(!pthread_attr_init(&attr));
  BPF_ASSERT(!pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
  BPF_ASSERT(!pthread_create(&thread, &attr, ThreadFnc, &thread_ran));
  BPF_ASSERT(!pthread_attr_destroy(&attr));
  while (SandboxSyscall(__NR_futex, &thread_ran, FUTEX_WAIT, 0, 0, 0, 0) ==
         -EINTR) {
  }
  BPF_ASSERT(thread_ran);

  // Attempt to fork() a process using clone(). This should fail. We use the
  // same flags that glibc uses when calling fork(). But we don't actually
  // try calling the fork() implementation in the C run-time library, as
  // run-time libraries other than glibc might call __NR_fork instead of
  // __NR_clone, and that would introduce a bogus test failure.
  int pid;
  BPF_ASSERT(SandboxSyscall(__NR_clone,
                            CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | SIGCHLD,
                            0,
                            0,
                            &pid) == -EPERM);
}

BPF_TEST(SandboxBPF, PthreadEquality, PthreadPolicyEquality) { PthreadTest(); }

BPF_TEST(SandboxBPF, PthreadBitMask, PthreadPolicyBitMask) { PthreadTest(); }

}  // namespace

}  // namespace sandbox