1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
#include "library.h"
#include "sandbox_impl.h"
#include "syscall_table.h"
namespace playground {
// Global variables
int Sandbox::pid_;
int Sandbox::processFdPub_;
int Sandbox::cloneFdPub_;
Sandbox::ProtectedMap Sandbox::protectedMap_;
std::vector<SecureMem::Args*> Sandbox::secureMemPool_;
bool Sandbox::sendFd(int transport, int fd0, int fd1, const void* buf,
size_t len) {
int fds[2], count = 0;
if (fd0 >= 0) { fds[count++] = fd0; }
if (fd1 >= 0) { fds[count++] = fd1; }
if (!count) {
return false;
}
char cmsg_buf[CMSG_SPACE(count*sizeof(int))];
memset(cmsg_buf, 0, sizeof(cmsg_buf));
struct SysCalls::kernel_iovec iov[2] = { { 0 } };
struct SysCalls::kernel_msghdr msg = { 0 };
int dummy = 0;
iov[0].iov_base = &dummy;
iov[0].iov_len = sizeof(dummy);
if (buf && len > 0) {
iov[1].iov_base = const_cast<void *>(buf);
iov[1].iov_len = len;
}
msg.msg_iov = iov;
msg.msg_iovlen = (buf && len > 0) ? 2 : 1;
msg.msg_control = cmsg_buf;
msg.msg_controllen = CMSG_LEN(count*sizeof(int));
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(count*sizeof(int));
memcpy(CMSG_DATA(cmsg), fds, count*sizeof(int));
SysCalls sys;
return NOINTR_SYS(sys.sendmsg(transport, &msg, 0)) ==
(ssize_t)(sizeof(dummy) + ((buf && len > 0) ? len : 0));
}
bool Sandbox::getFd(int transport, int* fd0, int* fd1, void* buf, size_t*len) {
int count = 0;
int *err = NULL;
if (fd0) {
count++;
err = fd0;
*fd0 = -1;
}
if (fd1) {
if (!count++) {
err = fd1;
}
*fd1 = -1;
}
if (!count) {
return false;
}
char cmsg_buf[CMSG_SPACE(count*sizeof(int))];
memset(cmsg_buf, 0, sizeof(cmsg_buf));
struct SysCalls::kernel_iovec iov[2] = { { 0 } };
struct SysCalls::kernel_msghdr msg = { 0 };
iov[0].iov_base = err;
iov[0].iov_len = sizeof(int);
if (buf && len && *len > 0) {
iov[1].iov_base = buf;
iov[1].iov_len = *len;
}
msg.msg_iov = iov;
msg.msg_iovlen = (buf && len && *len > 0) ? 2 : 1;
msg.msg_control = cmsg_buf;
msg.msg_controllen = CMSG_LEN(count*sizeof(int));
SysCalls sys;
ssize_t bytes = NOINTR_SYS(sys.recvmsg(transport, &msg, 0));
if (len) {
*len = bytes > (int)sizeof(int) ?
bytes - sizeof(int) : 0;
}
if (bytes != (ssize_t)(sizeof(int) + ((buf && len && *len > 0) ? *len : 0))){
*err = bytes >= 0 ? 0 : -EBADF;
return false;
}
if (*err) {
// "err" is the first four bytes of the payload. If these are non-zero,
// the sender on the other side of the socketpair sent us an errno value.
// We don't expect to get any file handles in this case.
return false;
}
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
if ((msg.msg_flags & (MSG_TRUNC|MSG_CTRUNC)) ||
!cmsg ||
cmsg->cmsg_level != SOL_SOCKET ||
cmsg->cmsg_type != SCM_RIGHTS ||
cmsg->cmsg_len != CMSG_LEN(count*sizeof(int))) {
*err = -EBADF;
return false;
}
if (fd1) { *fd1 = ((int *)CMSG_DATA(cmsg))[--count]; }
if (fd0) { *fd0 = ((int *)CMSG_DATA(cmsg))[--count]; }
return true;
}
void Sandbox::setupSignalHandlers() {
SysCalls sys;
struct SysCalls::kernel_sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_handler_ = SIG_DFL;
sys.sigaction(SIGCHLD, &sa, NULL);
// Set up SEGV handler for dealing with RDTSC instructions
sa.sa_handler_ = segv();
sys.sigaction(SIGSEGV, &sa, NULL);
// Block all asynchronous signals, except for SIGCHLD which needs to be
// set to SIG_DFL for waitpid() to work.
SysCalls::kernel_sigset_t mask;
memset(&mask, 0xFF, sizeof(mask));
mask.sig[0] &= ~((1 << (SIGSEGV - 1)) | (1 << (SIGINT - 1)) |
(1 << (SIGTERM - 1)) | (1 << (SIGQUIT - 1)) |
(1 << (SIGHUP - 1)) | (1 << (SIGABRT - 1)) |
(1 << (SIGCHLD - 1)));
sys.sigprocmask(SIG_SETMASK, &mask, 0);
}
void (*Sandbox::segv())(int signo) {
void (*fnc)(int signo);
asm volatile(
"call 999f\n"
#if defined(__x86_64__)
// Inspect instruction at the point where the segmentation fault
// happened. If it is RDTSC, forward the request to the trusted
// thread.
"mov $-3, %%r14\n" // request for RDTSC
"mov 0xB0(%%rsp), %%r15\n" // %rip at time of segmentation fault
"cmpw $0x310F, (%%r15)\n" // RDTSC
"jz 0f\n"
"cmpw $0x010F, (%%r15)\n" // RDTSCP
"jnz 8f\n"
"cmpb $0xF9, 2(%%r15)\n"
"jnz 8f\n"
"mov $-4, %%r14\n" // request for RDTSCP
"0:"
#ifndef NDEBUG
"lea 100f(%%rip), %%rdi\n"
"call playground$debugMessage\n"
#endif
"sub $4, %%rsp\n"
"push %%r14\n"
"mov %%gs:16, %%edi\n" // fd = threadFdPub
"mov %%rsp, %%rsi\n" // buf = %esp
"mov $4, %%edx\n" // len = sizeof(int)
"1:mov $1, %%eax\n" // NR_write
"syscall\n"
"cmp %%rax, %%rdx\n"
"jz 5f\n"
"cmp $-4, %%eax\n" // EINTR
"jz 1b\n"
"2:add $12, %%rsp\n"
"movq $0, 0x98(%%rsp)\n" // %rax at time of segmentation fault
"movq $0, 0x90(%%rsp)\n" // %rdx at time of segmentation fault
"cmpw $0x310F, (%%r15)\n" // RDTSC
"jz 3f\n"
"movq $0, 0xA0(%%rsp)\n" // %rcx at time of segmentation fault
"3:addq $2, 0xB0(%%rsp)\n" // %rip at time of segmentation fault
"cmpw $0x010F, (%%r15)\n" // RDTSC
"jnz 4f\n"
"addq $1, 0xB0(%%rsp)\n" // %rip at time of segmentation fault
"4:ret\n"
"5:mov $12, %%edx\n" // len = 3*sizeof(int)
"6:mov $0, %%eax\n" // NR_read
"syscall\n"
"cmp $-4, %%eax\n" // EINTR
"jz 6b\n"
"cmp %%rax, %%rdx\n"
"jnz 2b\n"
"mov 0(%%rsp), %%eax\n"
"mov 4(%%rsp), %%edx\n"
"mov 8(%%rsp), %%ecx\n"
"add $12, %%rsp\n"
"mov %%rdx, 0x90(%%rsp)\n" // %rdx at time of segmentation fault
"cmpw $0x310F, (%%r15)\n" // RDTSC
"jz 7f\n"
"mov %%rcx, 0xA0(%%rsp)\n" // %rcx at time of segmentation fault
"7:mov %%rax, 0x98(%%rsp)\n" // %rax at time of segmentation fault
"jmp 3b\n"
// If the instruction is INT 0, then this was probably the result
// of playground::Library being unable to find a way to safely
// rewrite the system call instruction. Retrieve the CPU register
// at the time of the segmentation fault and invoke syscallWrapper().
"8:cmpw $0xCD, (%%r15)\n" // INT $0x0
"jnz 9f\n"
#ifndef NDEBUG
"lea 200f(%%rip), %%rdi\n"
"call playground$debugMessage\n"
#endif
"mov 0x98(%%rsp), %%rax\n" // %rax at time of segmentation fault
"mov 0x70(%%rsp), %%rdi\n" // %rdi at time of segmentation fault
"mov 0x78(%%rsp), %%rsi\n" // %rsi at time of segmentation fault
"mov 0x90(%%rsp), %%rdx\n" // %rdx at time of segmentation fault
"mov 0x40(%%rsp), %%r10\n" // %r10 at time of segmentation fault
"mov 0x30(%%rsp), %%r8\n" // %r8 at time of segmentation fault
"mov 0x38(%%rsp), %%r9\n" // %r9 at time of segmentation fault
"lea 7b(%%rip), %%rcx\n"
"push %%rcx\n"
"push 0xB8(%%rsp)\n" // %rip at time of segmentation fault
"lea playground$syscallWrapper(%%rip), %%rcx\n"
"jmp *%%rcx\n"
// This was a genuine segmentation fault. Trigger the kernel's default
// signal disposition. The only way we can do this from seccomp mode
// is by blocking the signal and retriggering it.
"9:mov $2, %%edi\n" // stderr
"lea 300f(%%rip), %%rsi\n" // "Segmentation fault\n"
"mov $301f-300f, %%edx\n"
"mov $1, %%eax\n" // NR_write
"syscall\n"
"orb $4, 0x131(%%rsp)\n" // signal mask at time of segmentation fault
"ret\n"
#elif defined(__i386__)
// Inspect instruction at the point where the segmentation fault
// happened. If it is RDTSC, forward the request to the trusted
// thread.
"mov $-3, %%ebx\n" // request for RDTSC
"mov 0x40(%%esp), %%ebp\n" // %eip at time of segmentation fault
"cmpw $0x310F, (%%ebp)\n" // RDTSC
"jz 0f\n"
"cmpw $0x010F, (%%ebp)\n"
"jnz 8f\n"
"cmpb $0xF9, 2(%%ebp)\n"
"jnz 8f\n"
"mov $-4, %%ebx\n" // request for RDTSCP
"0:"
#ifndef NDEBUG
"lea 100f, %%eax\n"
"push %%eax\n"
"call playground$debugMessage\n"
"sub $4, %%esp\n"
#else
"sub $8, %%esp\n"
#endif
"push %%ebx\n"
"mov %%fs:16, %%ebx\n" // fd = threadFdPub
"mov %%esp, %%ecx\n" // buf = %esp
"mov $4, %%edx\n" // len = sizeof(int)
"1:mov %%edx, %%eax\n" // NR_write
"int $0x80\n"
"cmp %%eax, %%edx\n"
"jz 5f\n"
"cmp $-4, %%eax\n" // EINTR
"jz 1b\n"
"2:add $12, %%esp\n"
"movl $0, 0x34(%%esp)\n" // %eax at time of segmentation fault
"movl $0, 0x2C(%%esp)\n" // %edx at time of segmentation fault
"cmpw $0x310F, (%%ebp)\n" // RDTSC
"jz 3f\n"
"movl $0, 0x30(%%esp)\n" // %ecx at time of segmentation fault
"3:addl $2, 0x40(%%esp)\n" // %eip at time of segmentation fault
"mov 0x40(%%esp), %%ebp\n" // %eip at time of segmentation fault
"cmpw $0x010F, (%%ebp)\n" // RDTSC
"jnz 4f\n"
"addl $1, 0x40(%%esp)\n" // %eip at time of segmentation fault
"4:ret\n"
"5:mov $12, %%edx\n" // len = 3*sizeof(int)
"6:mov $3, %%eax\n" // NR_read
"int $0x80\n"
"cmp $-4, %%eax\n" // EINTR
"jz 6b\n"
"cmp %%eax, %%edx\n"
"jnz 2b\n"
"pop %%eax\n"
"pop %%edx\n"
"pop %%ecx\n"
"mov %%edx, 0x2C(%%esp)\n" // %edx at time of segmentation fault
"cmpw $0x310F, (%%ebp)\n" // RDTSC
"jz 7f\n"
"mov %%ecx, 0x30(%%esp)\n" // %ecx at time of segmentation fault
"7:mov %%eax, 0x34(%%esp)\n" // %eax at time of segmentation fault
"jmp 3b\n"
// If the instruction is INT 0, then this was probably the result
// of playground::Library being unable to find a way to safely
// rewrite the system call instruction. Retrieve the CPU register
// at the time of the segmentation fault and invoke syscallWrapper().
"8:cmpw $0xCD, (%%ebp)\n" // INT $0x0
"jnz 9f\n"
#ifndef NDEBUG
"lea 200f, %%eax\n"
"push %%eax\n"
"call playground$debugMessage\n"
"add $0x4, %%esp\n"
#endif
"mov 0x34(%%esp), %%eax\n" // %eax at time of segmentation fault
"mov 0x28(%%esp), %%ebx\n" // %ebx at time of segmentation fault
"mov 0x30(%%esp), %%ecx\n" // %ecx at time of segmentation fault
"mov 0x2C(%%esp), %%edx\n" // %edx at time of segmentation fault
"mov 0x1C(%%esp), %%esi\n" // %esi at time of segmentation fault
"mov 0x18(%%esp), %%edi\n" // %edi at time of segmentation fault
"mov 0x20(%%esp), %%ebp\n" // %ebp at time of segmentation fault
"call playground$syscallWrapper\n"
"jmp 7b\n"
// This was a genuine segmentation fault. Trigger the kernel's default
// signal disposition. The only way we can do this from seccomp mode
// is by blocking the signal and retriggering it.
"9:mov $2, %%ebx\n" // stderr
"lea 300f, %%ecx\n" // "Segmentation fault\n"
"mov $301f-300f, %%edx\n"
"mov $4, %%eax\n" // NR_write
"int $0x80\n"
"orb $4, 0x59(%%esp)\n" // signal mask at time of segmentation fault
"ret\n"
#else
#error Unsupported target platform
#endif
".pushsection \".rodata\"\n"
#ifndef NDEBUG
"100:.asciz \"RDTSC(P): Executing handler\\n\"\n"
"200:.asciz \"INT $0x0: Executing handler\\n\"\n"
#endif
"300:.ascii \"Segmentation fault\\n\"\n"
"301:\n"
".popsection\n"
"999:pop %0\n"
: "=g"(fnc)
);
return fnc;
}
void Sandbox::snapshotMemoryMappings(int processFd) {
SysCalls sys;
int mapsFd = sys.open("/proc/self/maps", O_RDONLY, 0);
if (mapsFd < 0 || !sendFd(processFd, mapsFd, -1, NULL, 0)) {
failure:
die("Cannot access /proc/self/maps");
}
NOINTR_SYS(sys.close(mapsFd));
int dummy;
if (read(sys, processFd, &dummy, sizeof(dummy)) != sizeof(dummy)) {
goto failure;
}
}
void Sandbox::startSandbox() {
SysCalls sys;
// The pid is unchanged for the entire program, so we can retrieve it once
// and store it in a global variable.
pid_ = sys.getpid();
// Block all signals, except for the RDTSC handler
setupSignalHandlers();
// Get socketpairs for talking to the trusted process
int pair[4];
if (socketpair(AF_UNIX, SOCK_STREAM, 0, pair) ||
socketpair(AF_UNIX, SOCK_STREAM, 0, pair+2)) {
die("Failed to create trusted thread");
}
processFdPub_ = pair[0];
cloneFdPub_ = pair[2];
SecureMemArgs::Args* secureMem = createTrustedProcess(pair[0], pair[1],
pair[2], pair[3]);
// We find all libraries that have system calls and redirect the system
// calls to the sandbox. If we miss any system calls, the application will be
// terminated by the kernel's seccomp code. So, from a security point of
// view, if this code fails to identify system calls, we are still behaving
// correctly.
{
Maps maps("/proc/self/maps");
const char *libs[] = { "ld", "libc", "librt", "libpthread", NULL };
// Intercept system calls in the VDSO segment (if any). This has to happen
// before intercepting system calls in any of the other libraries, as
// the main kernel entry point might be inside of the VDSO and we need to
// determine its address before we can compare it to jumps from inside
// other libraries.
for (Maps::const_iterator iter = maps.begin(); iter != maps.end(); ++iter){
Library* library = *iter;
if (library->isVDSO() && library->parseElf()) {
library->makeWritable(true);
library->patchSystemCalls();
library->makeWritable(false);
break;
}
}
// Intercept system calls in libraries that are known to have them.
for (Maps::const_iterator iter = maps.begin(); iter != maps.end(); ++iter){
Library* library = *iter;
for (const char **ptr = libs; *ptr; ptr++) {
const char *name = strstr(iter.name().c_str(), *ptr);
if (name) {
char ch = name[strlen(*ptr)];
if (ch < 'A' || (ch > 'Z' && ch < 'a') || ch > 'z') {
if (library->parseElf()) {
library->makeWritable(true);
library->patchSystemCalls();
library->makeWritable(false);
break;
}
}
}
}
}
}
// Take a snapshot of the current memory mappings. These mappings will be
// off-limits to all future mmap(), munmap(), mremap(), and mprotect() calls.
snapshotMemoryMappings(processFdPub_);
// Creating the trusted thread enables sandboxing
createTrustedThread(processFdPub_, cloneFdPub_, secureMem);
}
} // namespace
|