summaryrefslogtreecommitdiffstats
path: root/skia/ext/convolver.cc
blob: ee9d056fa436336338d92f8a3620d285c1d634cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <algorithm>

#include "skia/ext/convolver.h"
#include "third_party/skia/include/core/SkTypes.h"

#if defined(SIMD_SSE2)
#include <emmintrin.h>  // ARCH_CPU_X86_FAMILY was defined in build/config.h
#endif

namespace skia {

namespace {

// Converts the argument to an 8-bit unsigned value by clamping to the range
// 0-255.
inline unsigned char ClampTo8(int a) {
  if (static_cast<unsigned>(a) < 256)
    return a;  // Avoid the extra check in the common case.
  if (a < 0)
    return 0;
  return 255;
}

// Stores a list of rows in a circular buffer. The usage is you write into it
// by calling AdvanceRow. It will keep track of which row in the buffer it
// should use next, and the total number of rows added.
class CircularRowBuffer {
 public:
  // The number of pixels in each row is given in |source_row_pixel_width|.
  // The maximum number of rows needed in the buffer is |max_y_filter_size|
  // (we only need to store enough rows for the biggest filter).
  //
  // We use the |first_input_row| to compute the coordinates of all of the
  // following rows returned by Advance().
  CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size,
                    int first_input_row)
      : row_byte_width_(dest_row_pixel_width * 4),
        num_rows_(max_y_filter_size),
        next_row_(0),
        next_row_coordinate_(first_input_row) {
    buffer_.resize(row_byte_width_ * max_y_filter_size);
    row_addresses_.resize(num_rows_);
  }

  // Moves to the next row in the buffer, returning a pointer to the beginning
  // of it.
  unsigned char* AdvanceRow() {
    unsigned char* row = &buffer_[next_row_ * row_byte_width_];
    next_row_coordinate_++;

    // Set the pointer to the next row to use, wrapping around if necessary.
    next_row_++;
    if (next_row_ == num_rows_)
      next_row_ = 0;
    return row;
  }

  // Returns a pointer to an "unrolled" array of rows. These rows will start
  // at the y coordinate placed into |*first_row_index| and will continue in
  // order for the maximum number of rows in this circular buffer.
  //
  // The |first_row_index_| may be negative. This means the circular buffer
  // starts before the top of the image (it hasn't been filled yet).
  unsigned char* const* GetRowAddresses(int* first_row_index) {
    // Example for a 4-element circular buffer holding coords 6-9.
    //   Row 0   Coord 8
    //   Row 1   Coord 9
    //   Row 2   Coord 6  <- next_row_ = 2, next_row_coordinate_ = 10.
    //   Row 3   Coord 7
    //
    // The "next" row is also the first (lowest) coordinate. This computation
    // may yield a negative value, but that's OK, the math will work out
    // since the user of this buffer will compute the offset relative
    // to the first_row_index and the negative rows will never be used.
    *first_row_index = next_row_coordinate_ - num_rows_;

    int cur_row = next_row_;
    for (int i = 0; i < num_rows_; i++) {
      row_addresses_[i] = &buffer_[cur_row * row_byte_width_];

      // Advance to the next row, wrapping if necessary.
      cur_row++;
      if (cur_row == num_rows_)
        cur_row = 0;
    }
    return &row_addresses_[0];
  }

 private:
  // The buffer storing the rows. They are packed, each one row_byte_width_.
  std::vector<unsigned char> buffer_;

  // Number of bytes per row in the |buffer_|.
  int row_byte_width_;

  // The number of rows available in the buffer.
  int num_rows_;

  // The next row index we should write into. This wraps around as the
  // circular buffer is used.
  int next_row_;

  // The y coordinate of the |next_row_|. This is incremented each time a
  // new row is appended and does not wrap.
  int next_row_coordinate_;

  // Buffer used by GetRowAddresses().
  std::vector<unsigned char*> row_addresses_;
};

// Convolves horizontally along a single row. The row data is given in
// |src_data| and continues for the num_values() of the filter.
template<bool has_alpha>
void ConvolveHorizontally(const unsigned char* src_data,
                          const ConvolutionFilter1D& filter,
                          unsigned char* out_row) {
  // Loop over each pixel on this row in the output image.
  int num_values = filter.num_values();
  for (int out_x = 0; out_x < num_values; out_x++) {
    // Get the filter that determines the current output pixel.
    int filter_offset, filter_length;
    const ConvolutionFilter1D::Fixed* filter_values =
        filter.FilterForValue(out_x, &filter_offset, &filter_length);

    // Compute the first pixel in this row that the filter affects. It will
    // touch |filter_length| pixels (4 bytes each) after this.
    const unsigned char* row_to_filter = &src_data[filter_offset * 4];

    // Apply the filter to the row to get the destination pixel in |accum|.
    int accum[4] = {0};
    for (int filter_x = 0; filter_x < filter_length; filter_x++) {
      ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_x];
      accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0];
      accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1];
      accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2];
      if (has_alpha)
        accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3];
    }

    // Bring this value back in range. All of the filter scaling factors
    // are in fixed point with kShiftBits bits of fractional part.
    accum[0] >>= ConvolutionFilter1D::kShiftBits;
    accum[1] >>= ConvolutionFilter1D::kShiftBits;
    accum[2] >>= ConvolutionFilter1D::kShiftBits;
    if (has_alpha)
      accum[3] >>= ConvolutionFilter1D::kShiftBits;

    // Store the new pixel.
    out_row[out_x * 4 + 0] = ClampTo8(accum[0]);
    out_row[out_x * 4 + 1] = ClampTo8(accum[1]);
    out_row[out_x * 4 + 2] = ClampTo8(accum[2]);
    if (has_alpha)
      out_row[out_x * 4 + 3] = ClampTo8(accum[3]);
  }
}

// Does vertical convolution to produce one output row. The filter values and
// length are given in the first two parameters. These are applied to each
// of the rows pointed to in the |source_data_rows| array, with each row
// being |pixel_width| wide.
//
// The output must have room for |pixel_width * 4| bytes.
template<bool has_alpha>
void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
                        int filter_length,
                        unsigned char* const* source_data_rows,
                        int pixel_width,
                        unsigned char* out_row) {
  // We go through each column in the output and do a vertical convolution,
  // generating one output pixel each time.
  for (int out_x = 0; out_x < pixel_width; out_x++) {
    // Compute the number of bytes over in each row that the current column
    // we're convolving starts at. The pixel will cover the next 4 bytes.
    int byte_offset = out_x * 4;

    // Apply the filter to one column of pixels.
    int accum[4] = {0};
    for (int filter_y = 0; filter_y < filter_length; filter_y++) {
      ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_y];
      accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0];
      accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1];
      accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2];
      if (has_alpha)
        accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3];
    }

    // Bring this value back in range. All of the filter scaling factors
    // are in fixed point with kShiftBits bits of precision.
    accum[0] >>= ConvolutionFilter1D::kShiftBits;
    accum[1] >>= ConvolutionFilter1D::kShiftBits;
    accum[2] >>= ConvolutionFilter1D::kShiftBits;
    if (has_alpha)
      accum[3] >>= ConvolutionFilter1D::kShiftBits;

    // Store the new pixel.
    out_row[byte_offset + 0] = ClampTo8(accum[0]);
    out_row[byte_offset + 1] = ClampTo8(accum[1]);
    out_row[byte_offset + 2] = ClampTo8(accum[2]);
    if (has_alpha) {
      unsigned char alpha = ClampTo8(accum[3]);

      // Make sure the alpha channel doesn't come out smaller than any of the
      // color channels. We use premultipled alpha channels, so this should
      // never happen, but rounding errors will cause this from time to time.
      // These "impossible" colors will cause overflows (and hence random pixel
      // values) when the resulting bitmap is drawn to the screen.
      //
      // We only need to do this when generating the final output row (here).
      int max_color_channel = std::max(out_row[byte_offset + 0],
          std::max(out_row[byte_offset + 1], out_row[byte_offset + 2]));
      if (alpha < max_color_channel)
        out_row[byte_offset + 3] = max_color_channel;
      else
        out_row[byte_offset + 3] = alpha;
    } else {
      // No alpha channel, the image is opaque.
      out_row[byte_offset + 3] = 0xff;
    }
  }
}


// Convolves horizontally along a single row. The row data is given in
// |src_data| and continues for the num_values() of the filter.
void ConvolveHorizontally_SSE2(const unsigned char* src_data,
                               const ConvolutionFilter1D& filter,
                               unsigned char* out_row) {
#if defined(SIMD_SSE2)
  int num_values = filter.num_values();

  int filter_offset, filter_length;
  __m128i zero = _mm_setzero_si128();
  __m128i mask[4];
  // |mask| will be used to decimate all extra filter coefficients that are
  // loaded by SIMD when |filter_length| is not divisible by 4.
  // mask[0] is not used in following algorithm.
  mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
  mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
  mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);

  // Output one pixel each iteration, calculating all channels (RGBA) together.
  for (int out_x = 0; out_x < num_values; out_x++) {
    const ConvolutionFilter1D::Fixed* filter_values =
        filter.FilterForValue(out_x, &filter_offset, &filter_length);

    __m128i accum = _mm_setzero_si128();

    // Compute the first pixel in this row that the filter affects. It will
    // touch |filter_length| pixels (4 bytes each) after this.
    const __m128i* row_to_filter =
        reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);

    // We will load and accumulate with four coefficients per iteration.
    for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {

      // Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
      __m128i coeff, coeff16;
      // [16] xx xx xx xx c3 c2 c1 c0
      coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
      // [16] xx xx xx xx c1 c1 c0 c0
      coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
      // [16] c1 c1 c1 c1 c0 c0 c0 c0
      coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);

      // Load four pixels => unpack the first two pixels to 16 bits =>
      // multiply with coefficients => accumulate the convolution result.
      // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
      __m128i src8 = _mm_loadu_si128(row_to_filter);
      // [16] a1 b1 g1 r1 a0 b0 g0 r0
      __m128i src16 = _mm_unpacklo_epi8(src8, zero);
      __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
      __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
      // [32]  a0*c0 b0*c0 g0*c0 r0*c0
      __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
      accum = _mm_add_epi32(accum, t);
      // [32]  a1*c1 b1*c1 g1*c1 r1*c1
      t = _mm_unpackhi_epi16(mul_lo, mul_hi);
      accum = _mm_add_epi32(accum, t);

      // Duplicate 3rd and 4th coefficients for all channels =>
      // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
      // => accumulate the convolution results.
      // [16] xx xx xx xx c3 c3 c2 c2
      coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
      // [16] c3 c3 c3 c3 c2 c2 c2 c2
      coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
      // [16] a3 g3 b3 r3 a2 g2 b2 r2
      src16 = _mm_unpackhi_epi8(src8, zero);
      mul_hi = _mm_mulhi_epi16(src16, coeff16);
      mul_lo = _mm_mullo_epi16(src16, coeff16);
      // [32]  a2*c2 b2*c2 g2*c2 r2*c2
      t = _mm_unpacklo_epi16(mul_lo, mul_hi);
      accum = _mm_add_epi32(accum, t);
      // [32]  a3*c3 b3*c3 g3*c3 r3*c3
      t = _mm_unpackhi_epi16(mul_lo, mul_hi);
      accum = _mm_add_epi32(accum, t);

      // Advance the pixel and coefficients pointers.
      row_to_filter += 1;
      filter_values += 4;
    }

    // When |filter_length| is not divisible by 4, we need to decimate some of
    // the filter coefficient that was loaded incorrectly to zero; Other than
    // that the algorithm is same with above, exceot that the 4th pixel will be
    // always absent.
    int r = filter_length&3;
    if (r) {
      // Note: filter_values must be padded to align_up(filter_offset, 8).
      __m128i coeff, coeff16;
      coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
      // Mask out extra filter taps.
      coeff = _mm_and_si128(coeff, mask[r]);
      coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
      coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);

      // Note: line buffer must be padded to align_up(filter_offset, 16).
      // We resolve this by use C-version for the last horizontal line.
      __m128i src8 = _mm_loadu_si128(row_to_filter);
      __m128i src16 = _mm_unpacklo_epi8(src8, zero);
      __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
      __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
      __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
      accum = _mm_add_epi32(accum, t);
      t = _mm_unpackhi_epi16(mul_lo, mul_hi);
      accum = _mm_add_epi32(accum, t);

      src16 = _mm_unpackhi_epi8(src8, zero);
      coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
      coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
      mul_hi = _mm_mulhi_epi16(src16, coeff16);
      mul_lo = _mm_mullo_epi16(src16, coeff16);
      t = _mm_unpacklo_epi16(mul_lo, mul_hi);
      accum = _mm_add_epi32(accum, t);
    }

    // Shift right for fixed point implementation.
    accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits);

    // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
    accum = _mm_packs_epi32(accum, zero);
    // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
    accum = _mm_packus_epi16(accum, zero);

    // Store the pixel value of 32 bits.
    *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
    out_row += 4;
  }
#endif
}

// Convolves horizontally along four rows. The row data is given in
// |src_data| and continues for the num_values() of the filter.
// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
// refer to that function for detailed comments.
void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4],
                                const ConvolutionFilter1D& filter,
                                unsigned char* out_row[4]) {
#if defined(SIMD_SSE2)
  int num_values = filter.num_values();

  int filter_offset, filter_length;
  __m128i zero = _mm_setzero_si128();
  __m128i mask[4];
  // |mask| will be used to decimate all extra filter coefficients that are
  // loaded by SIMD when |filter_length| is not divisible by 4.
  // mask[0] is not used in following algorithm.
  mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
  mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
  mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);

  // Output one pixel each iteration, calculating all channels (RGBA) together.
  for (int out_x = 0; out_x < num_values; out_x++) {
    const ConvolutionFilter1D::Fixed* filter_values =
        filter.FilterForValue(out_x, &filter_offset, &filter_length);

    // four pixels in a column per iteration.
    __m128i accum0 = _mm_setzero_si128();
    __m128i accum1 = _mm_setzero_si128();
    __m128i accum2 = _mm_setzero_si128();
    __m128i accum3 = _mm_setzero_si128();
    int start = (filter_offset<<2);
    // We will load and accumulate with four coefficients per iteration.
    for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
      __m128i coeff, coeff16lo, coeff16hi;
      // [16] xx xx xx xx c3 c2 c1 c0
      coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
      // [16] xx xx xx xx c1 c1 c0 c0
      coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
      // [16] c1 c1 c1 c1 c0 c0 c0 c0
      coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
      // [16] xx xx xx xx c3 c3 c2 c2
      coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
      // [16] c3 c3 c3 c3 c2 c2 c2 c2
      coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);

      __m128i src8, src16, mul_hi, mul_lo, t;

#define ITERATION(src, accum)                                          \
      src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src));   \
      src16 = _mm_unpacklo_epi8(src8, zero);                           \
      mul_hi = _mm_mulhi_epi16(src16, coeff16lo);                      \
      mul_lo = _mm_mullo_epi16(src16, coeff16lo);                      \
      t = _mm_unpacklo_epi16(mul_lo, mul_hi);                          \
      accum = _mm_add_epi32(accum, t);                                 \
      t = _mm_unpackhi_epi16(mul_lo, mul_hi);                          \
      accum = _mm_add_epi32(accum, t);                                 \
      src16 = _mm_unpackhi_epi8(src8, zero);                           \
      mul_hi = _mm_mulhi_epi16(src16, coeff16hi);                      \
      mul_lo = _mm_mullo_epi16(src16, coeff16hi);                      \
      t = _mm_unpacklo_epi16(mul_lo, mul_hi);                          \
      accum = _mm_add_epi32(accum, t);                                 \
      t = _mm_unpackhi_epi16(mul_lo, mul_hi);                          \
      accum = _mm_add_epi32(accum, t)

      ITERATION(src_data[0] + start, accum0);
      ITERATION(src_data[1] + start, accum1);
      ITERATION(src_data[2] + start, accum2);
      ITERATION(src_data[3] + start, accum3);

      start += 16;
      filter_values += 4;
    }

    int r = filter_length & 3;
    if (r) {
      // Note: filter_values must be padded to align_up(filter_offset, 8);
      __m128i coeff;
      coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
      // Mask out extra filter taps.
      coeff = _mm_and_si128(coeff, mask[r]);

      __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
      /* c1 c1 c1 c1 c0 c0 c0 c0 */
      coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
      __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
      coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);

      __m128i src8, src16, mul_hi, mul_lo, t;

      ITERATION(src_data[0] + start, accum0);
      ITERATION(src_data[1] + start, accum1);
      ITERATION(src_data[2] + start, accum2);
      ITERATION(src_data[3] + start, accum3);
    }

    accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
    accum0 = _mm_packs_epi32(accum0, zero);
    accum0 = _mm_packus_epi16(accum0, zero);
    accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
    accum1 = _mm_packs_epi32(accum1, zero);
    accum1 = _mm_packus_epi16(accum1, zero);
    accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
    accum2 = _mm_packs_epi32(accum2, zero);
    accum2 = _mm_packus_epi16(accum2, zero);
    accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
    accum3 = _mm_packs_epi32(accum3, zero);
    accum3 = _mm_packus_epi16(accum3, zero);

    *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
    *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
    *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
    *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);

    out_row[0] += 4;
    out_row[1] += 4;
    out_row[2] += 4;
    out_row[3] += 4;
  }
#endif
}

// Does vertical convolution to produce one output row. The filter values and
// length are given in the first two parameters. These are applied to each
// of the rows pointed to in the |source_data_rows| array, with each row
// being |pixel_width| wide.
//
// The output must have room for |pixel_width * 4| bytes.
template<bool has_alpha>
void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values,
                             int filter_length,
                             unsigned char* const* source_data_rows,
                             int pixel_width,
                             unsigned char* out_row) {
#if defined(SIMD_SSE2)
  int width = pixel_width & ~3;

  __m128i zero = _mm_setzero_si128();
  __m128i accum0, accum1, accum2, accum3, coeff16;
  const __m128i* src;
  // Output four pixels per iteration (16 bytes).
  for (int out_x = 0; out_x < width; out_x += 4) {

    // Accumulated result for each pixel. 32 bits per RGBA channel.
    accum0 = _mm_setzero_si128();
    accum1 = _mm_setzero_si128();
    accum2 = _mm_setzero_si128();
    accum3 = _mm_setzero_si128();

    // Convolve with one filter coefficient per iteration.
    for (int filter_y = 0; filter_y < filter_length; filter_y++) {

      // Duplicate the filter coefficient 8 times.
      // [16] cj cj cj cj cj cj cj cj
      coeff16 = _mm_set1_epi16(filter_values[filter_y]);

      // Load four pixels (16 bytes) together.
      // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
      src = reinterpret_cast<const __m128i*>(
          &source_data_rows[filter_y][out_x << 2]);
      __m128i src8 = _mm_loadu_si128(src);

      // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
      // multiply with current coefficient => accumulate the result.
      // [16] a1 b1 g1 r1 a0 b0 g0 r0
      __m128i src16 = _mm_unpacklo_epi8(src8, zero);
      __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
      __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
      // [32] a0 b0 g0 r0
      __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
      accum0 = _mm_add_epi32(accum0, t);
      // [32] a1 b1 g1 r1
      t = _mm_unpackhi_epi16(mul_lo, mul_hi);
      accum1 = _mm_add_epi32(accum1, t);

      // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
      // multiply with current coefficient => accumulate the result.
      // [16] a3 b3 g3 r3 a2 b2 g2 r2
      src16 = _mm_unpackhi_epi8(src8, zero);
      mul_hi = _mm_mulhi_epi16(src16, coeff16);
      mul_lo = _mm_mullo_epi16(src16, coeff16);
      // [32] a2 b2 g2 r2
      t = _mm_unpacklo_epi16(mul_lo, mul_hi);
      accum2 = _mm_add_epi32(accum2, t);
      // [32] a3 b3 g3 r3
      t = _mm_unpackhi_epi16(mul_lo, mul_hi);
      accum3 = _mm_add_epi32(accum3, t);
    }

    // Shift right for fixed point implementation.
    accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
    accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
    accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
    accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);

    // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
    // [16] a1 b1 g1 r1 a0 b0 g0 r0
    accum0 = _mm_packs_epi32(accum0, accum1);
    // [16] a3 b3 g3 r3 a2 b2 g2 r2
    accum2 = _mm_packs_epi32(accum2, accum3);

    // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
    // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
    accum0 = _mm_packus_epi16(accum0, accum2);

    if (has_alpha) {
      // Compute the max(ri, gi, bi) for each pixel.
      // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
      __m128i a = _mm_srli_epi32(accum0, 8);
      // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
      __m128i b = _mm_max_epu8(a, accum0);  // Max of r and g.
      // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
      a = _mm_srli_epi32(accum0, 16);
      // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
      b = _mm_max_epu8(a, b);  // Max of r and g and b.
      // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
      b = _mm_slli_epi32(b, 24);

      // Make sure the value of alpha channel is always larger than maximum
      // value of color channels.
      accum0 = _mm_max_epu8(b, accum0);
    } else {
      // Set value of alpha channels to 0xFF.
      __m128i mask = _mm_set1_epi32(0xff000000);
      accum0 = _mm_or_si128(accum0, mask);
    }

    // Store the convolution result (16 bytes) and advance the pixel pointers.
    _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
    out_row += 16;
  }

  // When the width of the output is not divisible by 4, We need to save one
  // pixel (4 bytes) each time. And also the fourth pixel is always absent.
  if (pixel_width & 3) {
    accum0 = _mm_setzero_si128();
    accum1 = _mm_setzero_si128();
    accum2 = _mm_setzero_si128();
    for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
      coeff16 = _mm_set1_epi16(filter_values[filter_y]);
      // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
      src = reinterpret_cast<const __m128i*>(
          &source_data_rows[filter_y][width<<2]);
      __m128i src8 = _mm_loadu_si128(src);
      // [16] a1 b1 g1 r1 a0 b0 g0 r0
      __m128i src16 = _mm_unpacklo_epi8(src8, zero);
      __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
      __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
      // [32] a0 b0 g0 r0
      __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
      accum0 = _mm_add_epi32(accum0, t);
      // [32] a1 b1 g1 r1
      t = _mm_unpackhi_epi16(mul_lo, mul_hi);
      accum1 = _mm_add_epi32(accum1, t);
      // [16] a3 b3 g3 r3 a2 b2 g2 r2
      src16 = _mm_unpackhi_epi8(src8, zero);
      mul_hi = _mm_mulhi_epi16(src16, coeff16);
      mul_lo = _mm_mullo_epi16(src16, coeff16);
      // [32] a2 b2 g2 r2
      t = _mm_unpacklo_epi16(mul_lo, mul_hi);
      accum2 = _mm_add_epi32(accum2, t);
    }

    accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
    accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
    accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
    // [16] a1 b1 g1 r1 a0 b0 g0 r0
    accum0 = _mm_packs_epi32(accum0, accum1);
    // [16] a3 b3 g3 r3 a2 b2 g2 r2
    accum2 = _mm_packs_epi32(accum2, zero);
    // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
    accum0 = _mm_packus_epi16(accum0, accum2);
    if (has_alpha) {
      // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
      __m128i a = _mm_srli_epi32(accum0, 8);
      // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
      __m128i b = _mm_max_epu8(a, accum0);  // Max of r and g.
      // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
      a = _mm_srli_epi32(accum0, 16);
      // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
      b = _mm_max_epu8(a, b);  // Max of r and g and b.
      // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
      b = _mm_slli_epi32(b, 24);
      accum0 = _mm_max_epu8(b, accum0);
    } else {
      __m128i mask = _mm_set1_epi32(0xff000000);
      accum0 = _mm_or_si128(accum0, mask);
    }

    for (int out_x = width; out_x < pixel_width; out_x++) {
      *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
      accum0 = _mm_srli_si128(accum0, 4);
      out_row += 4;
    }
  }
#endif
}

}  // namespace

// ConvolutionFilter1D ---------------------------------------------------------

ConvolutionFilter1D::ConvolutionFilter1D()
    : max_filter_(0) {
}

ConvolutionFilter1D::~ConvolutionFilter1D() {
}

void ConvolutionFilter1D::AddFilter(int filter_offset,
                                    const float* filter_values,
                                    int filter_length) {
  SkASSERT(filter_length > 0);

  std::vector<Fixed> fixed_values;
  fixed_values.reserve(filter_length);

  for (int i = 0; i < filter_length; ++i)
    fixed_values.push_back(FloatToFixed(filter_values[i]));

  AddFilter(filter_offset, &fixed_values[0], filter_length);
}

void ConvolutionFilter1D::AddFilter(int filter_offset,
                                    const Fixed* filter_values,
                                    int filter_length) {
  // It is common for leading/trailing filter values to be zeros. In such
  // cases it is beneficial to only store the central factors.
  // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on
  // a 1080p image this optimization gives a ~10% speed improvement.
  int first_non_zero = 0;
  while (first_non_zero < filter_length && filter_values[first_non_zero] == 0)
    first_non_zero++;

  if (first_non_zero < filter_length) {
    // Here we have at least one non-zero factor.
    int last_non_zero = filter_length - 1;
    while (last_non_zero >= 0 && filter_values[last_non_zero] == 0)
      last_non_zero--;

    filter_offset += first_non_zero;
    filter_length = last_non_zero + 1 - first_non_zero;
    SkASSERT(filter_length > 0);

    for (int i = first_non_zero; i <= last_non_zero; i++)
      filter_values_.push_back(filter_values[i]);
  } else {
    // Here all the factors were zeroes.
    filter_length = 0;
  }

  FilterInstance instance;

  // We pushed filter_length elements onto filter_values_
  instance.data_location = (static_cast<int>(filter_values_.size()) -
                            filter_length);
  instance.offset = filter_offset;
  instance.length = filter_length;
  filters_.push_back(instance);

  max_filter_ = std::max(max_filter_, filter_length);
}

void BGRAConvolve2D(const unsigned char* source_data,
                    int source_byte_row_stride,
                    bool source_has_alpha,
                    const ConvolutionFilter1D& filter_x,
                    const ConvolutionFilter1D& filter_y,
                    int output_byte_row_stride,
                    unsigned char* output,
                    bool use_sse2) {
#if !defined(SIMD_SSE2)
  // Even we have runtime support for SSE2 instructions, since the binary
  // was not built with SSE2 support, we had to fallback to C version.
  use_sse2 = false;
#endif

  int max_y_filter_size = filter_y.max_filter();

  // The next row in the input that we will generate a horizontally
  // convolved row for. If the filter doesn't start at the beginning of the
  // image (this is the case when we are only resizing a subset), then we
  // don't want to generate any output rows before that. Compute the starting
  // row for convolution as the first pixel for the first vertical filter.
  int filter_offset, filter_length;
  const ConvolutionFilter1D::Fixed* filter_values =
      filter_y.FilterForValue(0, &filter_offset, &filter_length);
  int next_x_row = filter_offset;

  // We loop over each row in the input doing a horizontal convolution. This
  // will result in a horizontally convolved image. We write the results into
  // a circular buffer of convolved rows and do vertical convolution as rows
  // are available. This prevents us from having to store the entire
  // intermediate image and helps cache coherency.
  // We will need four extra rows to allow horizontal convolution could be done
  // simultaneously. We also padding each row in row buffer to be aligned-up to
  // 16 bytes.
  // TODO(jiesun): We do not use aligned load from row buffer in vertical
  // convolution pass yet. Somehow Windows does not like it.
  int row_buffer_width = (filter_x.num_values() + 15) & ~0xF;
  int row_buffer_height = max_y_filter_size + (use_sse2 ? 4 : 0);
  CircularRowBuffer row_buffer(row_buffer_width,
                               row_buffer_height,
                               filter_offset);

  // Loop over every possible output row, processing just enough horizontal
  // convolutions to run each subsequent vertical convolution.
  SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4);
  int num_output_rows = filter_y.num_values();

  // We need to check which is the last line to convolve before we advance 4
  // lines in one iteration.
  int last_filter_offset, last_filter_length;
  filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset,
                          &last_filter_length);

  for (int out_y = 0; out_y < num_output_rows; out_y++) {
    filter_values = filter_y.FilterForValue(out_y,
                                            &filter_offset, &filter_length);

    // Generate output rows until we have enough to run the current filter.
    if (use_sse2) {
      while (next_x_row < filter_offset + filter_length) {
        if (next_x_row + 3 < last_filter_offset + last_filter_length - 1) {
          const unsigned char* src[4];
          unsigned char* out_row[4];
          for (int i = 0; i < 4; ++i) {
            src[i] = &source_data[(next_x_row + i) * source_byte_row_stride];
            out_row[i] = row_buffer.AdvanceRow();
          }
          ConvolveHorizontally4_SSE2(src, filter_x, out_row);
          next_x_row += 4;
        } else {
          // For the last row, SSE2 load possibly to access data beyond the
          // image area. therefore we use C version here. 
          if (next_x_row == last_filter_offset + last_filter_length - 1) {
            if (source_has_alpha) {
              ConvolveHorizontally<true>(
                  &source_data[next_x_row * source_byte_row_stride],
                  filter_x, row_buffer.AdvanceRow());
            } else {
              ConvolveHorizontally<false>(
                  &source_data[next_x_row * source_byte_row_stride],
                  filter_x, row_buffer.AdvanceRow());
            }
          } else {
            ConvolveHorizontally_SSE2(
                &source_data[next_x_row * source_byte_row_stride],
                filter_x, row_buffer.AdvanceRow());
          }
          next_x_row++;
        }
      }
    } else {
      while (next_x_row < filter_offset + filter_length) {
        if (source_has_alpha) {
          ConvolveHorizontally<true>(
              &source_data[next_x_row * source_byte_row_stride],
              filter_x, row_buffer.AdvanceRow());
        } else {
          ConvolveHorizontally<false>(
              &source_data[next_x_row * source_byte_row_stride],
              filter_x, row_buffer.AdvanceRow());
        }
        next_x_row++;
      }
    }

    // Compute where in the output image this row of final data will go.
    unsigned char* cur_output_row = &output[out_y * output_byte_row_stride];

    // Get the list of rows that the circular buffer has, in order.
    int first_row_in_circular_buffer;
    unsigned char* const* rows_to_convolve =
        row_buffer.GetRowAddresses(&first_row_in_circular_buffer);

    // Now compute the start of the subset of those rows that the filter
    // needs.
    unsigned char* const* first_row_for_filter =
        &rows_to_convolve[filter_offset - first_row_in_circular_buffer];

    if (source_has_alpha) {
      if (use_sse2) {
        ConvolveVertically_SSE2<true>(filter_values, filter_length,
                                      first_row_for_filter,
                                      filter_x.num_values(), cur_output_row);
      } else {
        ConvolveVertically<true>(filter_values, filter_length,
                                 first_row_for_filter,
                                 filter_x.num_values(), cur_output_row);
      }
    } else {
      if (use_sse2) {
        ConvolveVertically_SSE2<false>(filter_values, filter_length,
                                       first_row_for_filter,
                                       filter_x.num_values(), cur_output_row);
      } else {
        ConvolveVertically<false>(filter_values, filter_length,
                                 first_row_for_filter,
                                 filter_x.num_values(), cur_output_row);
      }
    }
  }
}

}  // namespace skia