summaryrefslogtreecommitdiffstats
path: root/skia/ext/convolver_unittest.cc
blob: 038cb047fb6312286f424cdc261f887b48e0aba9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <string.h>
#include <time.h>
#include <vector>

#include "base/basictypes.h"
#include "base/logging.h"
#include "base/time.h"
#include "skia/ext/convolver.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkColorPriv.h"
#include "third_party/skia/include/core/SkRect.h"
#include "third_party/skia/include/core/SkTypes.h"

namespace skia {

namespace {

// Fills the given filter with impulse functions for the range 0->num_entries.
void FillImpulseFilter(int num_entries, ConvolutionFilter1D* filter) {
  float one = 1.0f;
  for (int i = 0; i < num_entries; i++)
    filter->AddFilter(i, &one, 1);
}

// Filters the given input with the impulse function, and verifies that it
// does not change.
void TestImpulseConvolution(const unsigned char* data, int width, int height) {
  int byte_count = width * height * 4;

  ConvolutionFilter1D filter_x;
  FillImpulseFilter(width, &filter_x);

  ConvolutionFilter1D filter_y;
  FillImpulseFilter(height, &filter_y);

  std::vector<unsigned char> output;
  output.resize(byte_count);
  BGRAConvolve2D(data, width * 4, true, filter_x, filter_y,
                 filter_x.num_values() * 4, &output[0], false);

  // Output should exactly match input.
  EXPECT_EQ(0, memcmp(data, &output[0], byte_count));
}

// Fills the destination filter with a box filter averaging every two pixels
// to produce the output.
void FillBoxFilter(int size, ConvolutionFilter1D* filter) {
  const float box[2] = { 0.5, 0.5 };
  for (int i = 0; i < size; i++)
    filter->AddFilter(i * 2, box, 2);
}

}  // namespace

// Tests that each pixel, when set and run through the impulse filter, does
// not change.
TEST(Convolver, Impulse) {
  // We pick an "odd" size that is not likely to fit on any boundaries so that
  // we can see if all the widths and paddings are handled properly.
  int width = 15;
  int height = 31;
  int byte_count = width * height * 4;
  std::vector<unsigned char> input;
  input.resize(byte_count);

  unsigned char* input_ptr = &input[0];
  for (int y = 0; y < height; y++) {
    for (int x = 0; x < width; x++) {
      for (int channel = 0; channel < 3; channel++) {
        memset(input_ptr, 0, byte_count);
        input_ptr[(y * width + x) * 4 + channel] = 0xff;
        // Always set the alpha channel or it will attempt to "fix" it for us.
        input_ptr[(y * width + x) * 4 + 3] = 0xff;
        TestImpulseConvolution(input_ptr, width, height);
      }
    }
  }
}

// Tests that using a box filter to halve an image results in every square of 4
// pixels in the original get averaged to a pixel in the output.
TEST(Convolver, Halve) {
  static const int kSize = 16;

  int src_width = kSize;
  int src_height = kSize;
  int src_row_stride = src_width * 4;
  int src_byte_count = src_row_stride * src_height;
  std::vector<unsigned char> input;
  input.resize(src_byte_count);

  int dest_width = src_width / 2;
  int dest_height = src_height / 2;
  int dest_byte_count = dest_width * dest_height * 4;
  std::vector<unsigned char> output;
  output.resize(dest_byte_count);

  // First fill the array with a bunch of random data.
  srand(static_cast<unsigned>(time(NULL)));
  for (int i = 0; i < src_byte_count; i++)
    input[i] = rand() * 255 / RAND_MAX;

  // Compute the filters.
  ConvolutionFilter1D filter_x, filter_y;
  FillBoxFilter(dest_width, &filter_x);
  FillBoxFilter(dest_height, &filter_y);

  // Do the convolution.
  BGRAConvolve2D(&input[0], src_width, true, filter_x, filter_y,
                 filter_x.num_values() * 4, &output[0], false);

  // Compute the expected results and check, allowing for a small difference
  // to account for rounding errors.
  for (int y = 0; y < dest_height; y++) {
    for (int x = 0; x < dest_width; x++) {
      for (int channel = 0; channel < 4; channel++) {
        int src_offset = (y * 2 * src_row_stride + x * 2 * 4) + channel;
        int value = input[src_offset] +  // Top left source pixel.
                    input[src_offset + 4] +  // Top right source pixel.
                    input[src_offset + src_row_stride] +  // Lower left.
                    input[src_offset + src_row_stride + 4];  // Lower right.
        value /= 4;  // Average.
        int difference = value - output[(y * dest_width + x) * 4 + channel];
        EXPECT_TRUE(difference >= -1 || difference <= 1);
      }
    }
  }
}

// Tests the optimization in Convolver1D::AddFilter that avoids storing
// leading/trailing zeroes.
TEST(Convolver, AddFilter) {
  skia::ConvolutionFilter1D filter;

  const skia::ConvolutionFilter1D::Fixed* values = NULL;
  int filter_offset = 0;
  int filter_length = 0;

  // An all-zero filter is handled correctly, all factors ignored
  static const float factors1[] = { 0.0f, 0.0f, 0.0f };
  filter.AddFilter(11, factors1, arraysize(factors1));
  ASSERT_EQ(0, filter.max_filter());
  ASSERT_EQ(1, filter.num_values());

  values = filter.FilterForValue(0, &filter_offset, &filter_length);
  ASSERT_TRUE(values == NULL);   // No values => NULL.
  ASSERT_EQ(11, filter_offset);  // Same as input offset.
  ASSERT_EQ(0, filter_length);   // But no factors since all are zeroes.

  // Zeroes on the left are ignored
  static const float factors2[] = { 0.0f, 1.0f, 1.0f, 1.0f, 1.0f };
  filter.AddFilter(22, factors2, arraysize(factors2));
  ASSERT_EQ(4, filter.max_filter());
  ASSERT_EQ(2, filter.num_values());

  values = filter.FilterForValue(1, &filter_offset, &filter_length);
  ASSERT_TRUE(values != NULL);
  ASSERT_EQ(23, filter_offset);  // 22 plus 1 leading zero
  ASSERT_EQ(4, filter_length);   // 5 - 1 leading zero

  // Zeroes on the right are ignored
  static const float factors3[] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f };
  filter.AddFilter(33, factors3, arraysize(factors3));
  ASSERT_EQ(5, filter.max_filter());
  ASSERT_EQ(3, filter.num_values());

  values = filter.FilterForValue(2, &filter_offset, &filter_length);
  ASSERT_TRUE(values != NULL);
  ASSERT_EQ(33, filter_offset);  // 33, same as input due to no leading zero
  ASSERT_EQ(5, filter_length);   // 7 - 2 trailing zeroes

  // Zeroes in leading & trailing positions
  static const float factors4[] = { 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f };
  filter.AddFilter(44, factors4, arraysize(factors4));
  ASSERT_EQ(5, filter.max_filter());  // No change from existing value.
  ASSERT_EQ(4, filter.num_values());

  values = filter.FilterForValue(3, &filter_offset, &filter_length);
  ASSERT_TRUE(values != NULL);
  ASSERT_EQ(46, filter_offset);  // 44 plus 2 leading zeroes
  ASSERT_EQ(3, filter_length);   // 7 - (2 leading + 2 trailing) zeroes

  // Zeroes surrounded by non-zero values are ignored
  static const float factors5[] = { 0.0f, 0.0f,
                                    1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
                                    0.0f };
  filter.AddFilter(55, factors5, arraysize(factors5));
  ASSERT_EQ(6, filter.max_filter());
  ASSERT_EQ(5, filter.num_values());

  values = filter.FilterForValue(4, &filter_offset, &filter_length);
  ASSERT_TRUE(values != NULL);
  ASSERT_EQ(57, filter_offset);  // 55 plus 2 leading zeroes
  ASSERT_EQ(6, filter_length);   // 9 - (2 leading + 1 trailing) zeroes

  // All-zero filters after the first one also work
  static const float factors6[] = { 0.0f };
  filter.AddFilter(66, factors6, arraysize(factors6));
  ASSERT_EQ(6, filter.max_filter());
  ASSERT_EQ(6, filter.num_values());

  values = filter.FilterForValue(5, &filter_offset, &filter_length);
  ASSERT_TRUE(values == NULL);   // filter_length == 0 => values is NULL
  ASSERT_EQ(66, filter_offset);  // value passed in
  ASSERT_EQ(0, filter_length);
}

TEST(Convolver, SIMDVerification) {
#if defined(SIMD_SSE2)
  base::CPU cpu;
  if (!cpu.has_sse2()) return;

  int source_sizes[][2] = { {1920, 1080}, {720, 480}, {1377, 523}, {325, 241} };
  int dest_sizes[][2] = { {1280, 1024}, {480, 270}, {177, 123} };
  float filter[] = { 0.05f, -0.15f, 0.6f, 0.6f, -0.15f, 0.05f };

  srand(static_cast<unsigned int>(time(0)));

  // Loop over some specific source and destination dimensions.
  for (unsigned int i = 0; i < arraysize(source_sizes); ++i) {
    unsigned int source_width = source_sizes[i][0];
    unsigned int source_height = source_sizes[i][1];
    for (unsigned int j = 0; j < arraysize(dest_sizes); ++j) {
      unsigned int dest_width = source_sizes[j][0];
      unsigned int dest_height = source_sizes[j][1];

      // Preparing convolve coefficients.
      ConvolutionFilter1D x_filter, y_filter;
      for (unsigned int p = 0; p < dest_width; ++p) {
        unsigned int offset = source_width * p / dest_width;
        if (offset > source_width - arraysize(filter))
          offset = source_width - arraysize(filter);
        x_filter.AddFilter(offset, filter, arraysize(filter));
      }
      for (unsigned int p = 0; p < dest_height; ++p) {
        unsigned int offset = source_height * p / dest_height;
        if (offset > source_height - arraysize(filter))
          offset = source_height - arraysize(filter);
        y_filter.AddFilter(offset, filter, arraysize(filter));
      }

      // Allocate input and output skia bitmap.
      SkBitmap source, result_c, result_sse;
      source.setConfig(SkBitmap::kARGB_8888_Config,
                       source_width, source_height);
      source.allocPixels();
      result_c.setConfig(SkBitmap::kARGB_8888_Config,
                         dest_width, dest_height);
      result_c.allocPixels();
      result_sse.setConfig(SkBitmap::kARGB_8888_Config,
                           dest_width, dest_height);
      result_sse.allocPixels();

      // Randomize source bitmap for testing.
      unsigned char* src_ptr = static_cast<unsigned char*>(source.getPixels());
      for (int y = 0; y < source.height(); y++) {
        for (int x = 0; x < source.rowBytes(); x++)
          src_ptr[x] = rand() % 255;
        src_ptr += source.rowBytes();
      }

      // Test both cases with different has_alpha.
      for (int alpha = 0; alpha < 2; alpha++) {
        // Convolve using C code.
        base::TimeTicks resize_start;
        base::TimeDelta delta_c, delta_sse;
        unsigned char* r1 = static_cast<unsigned char*>(result_c.getPixels());
        unsigned char* r2 = static_cast<unsigned char*>(result_sse.getPixels());

        resize_start = base::TimeTicks::Now();
        BGRAConvolve2D(static_cast<const uint8*>(source.getPixels()),
                       static_cast<int>(source.rowBytes()),
                       alpha ? true : false, x_filter, y_filter,
                       static_cast<int>(result_c.rowBytes()), r1, false);
        delta_c = base::TimeTicks::Now() - resize_start;

        resize_start = base::TimeTicks::Now();
        // Convolve using SSE2 code
        BGRAConvolve2D(static_cast<const uint8*>(source.getPixels()),
                       static_cast<int>(source.rowBytes()),
                       alpha ? true : false, x_filter, y_filter,
                       static_cast<int>(result_sse.rowBytes()), r2, true);
        delta_sse = base::TimeTicks::Now() - resize_start;

        // Unfortunately I could not enable the performance check now.
        // Most bots use debug version, and there are great difference between
        // the code generation for intrinsic, etc. In release version speed
        // difference was 150%-200% depend on alpha channel presence;
        // while in debug version speed difference was 96%-120%.
        // TODO(jiesun): optimize further until we could enable this for
        // debug version too.
        // EXPECT_LE(delta_sse, delta_c);

        int64 c_us = delta_c.InMicroseconds();
        int64 sse_us = delta_sse.InMicroseconds();
        VLOG(1) << "from:" << source_width << "x" << source_height
                << " to:" << dest_width << "x" << dest_height
                << (alpha ? " with alpha" : " w/o alpha");
        VLOG(1) << "c:" << c_us << " sse:" << sse_us;
        VLOG(1) << "ratio:" << static_cast<float>(c_us) / sse_us;

        // Comparing result.
        for (unsigned int i = 0; i < dest_height; i++) {
          for (unsigned int x = 0; x < dest_width * 4; x++) {  // RGBA always.
            EXPECT_EQ(r1[x], r2[x]);
          }
          r1 += result_c.rowBytes();
          r2 += result_sse.rowBytes();
        }
      }
    }
  }
#endif
}

}  // namespace skia