1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sync/engine/apply_control_data_updates.h"
#include "base/metrics/histogram.h"
#include "sync/engine/conflict_resolver.h"
#include "sync/engine/conflict_util.h"
#include "sync/engine/syncer_util.h"
#include "sync/syncable/directory.h"
#include "sync/syncable/mutable_entry.h"
#include "sync/syncable/nigori_handler.h"
#include "sync/syncable/nigori_util.h"
#include "sync/syncable/syncable_write_transaction.h"
#include "sync/util/cryptographer.h"
namespace syncer {
using syncable::GET_TYPE_ROOT;
using syncable::IS_UNAPPLIED_UPDATE;
using syncable::IS_UNSYNCED;
using syncable::SERVER_SPECIFICS;
using syncable::SPECIFICS;
using syncable::SYNCER;
void ApplyControlDataUpdates(syncable::Directory* dir) {
syncable::WriteTransaction trans(FROM_HERE, SYNCER, dir);
std::vector<int64> handles;
dir->GetUnappliedUpdateMetaHandles(
&trans, ToFullModelTypeSet(ControlTypes()), &handles);
// First, go through and manually apply any new top level datatype nodes (so
// that we don't have to worry about hitting a CONFLICT_HIERARCHY with an
// entry because we haven't applied its parent yet).
// TODO(sync): if at some point we support control datatypes with actual
// hierarchies we'll need to revisit this logic.
ModelTypeSet control_types = ControlTypes();
for (ModelTypeSet::Iterator iter = control_types.First(); iter.Good();
iter.Inc()) {
syncable::MutableEntry entry(&trans, syncable::GET_TYPE_ROOT, iter.Get());
if (!entry.good())
continue;
if (!entry.GetIsUnappliedUpdate())
continue;
ModelType type = entry.GetServerModelType();
if (type == NIGORI) {
// Nigori node applications never fail.
ApplyNigoriUpdate(&trans,
&entry,
dir->GetCryptographer(&trans));
} else {
ApplyControlUpdate(&trans,
&entry,
dir->GetCryptographer(&trans));
}
}
// Go through the rest of the unapplied control updates, skipping over any
// top level folders.
for (std::vector<int64>::const_iterator iter = handles.begin();
iter != handles.end(); ++iter) {
syncable::MutableEntry entry(&trans, syncable::GET_BY_HANDLE, *iter);
CHECK(entry.good());
ModelType type = entry.GetServerModelType();
CHECK(ControlTypes().Has(type));
if (!entry.GetUniqueServerTag().empty()) {
// We should have already applied all top level control nodes.
DCHECK(!entry.GetIsUnappliedUpdate());
continue;
}
ApplyControlUpdate(&trans,
&entry,
dir->GetCryptographer(&trans));
}
}
// Update the nigori handler with the server's nigori node.
//
// If we have a locally modified nigori node, we merge them manually. This
// handles the case where two clients both set a different passphrase. The
// second client to attempt to commit will go into a state of having pending
// keys, unioned the set of encrypted types, and eventually re-encrypt
// everything with the passphrase of the first client and commit the set of
// merged encryption keys. Until the second client provides the pending
// passphrase, the cryptographer will preserve the encryption keys based on the
// local passphrase, while the nigori node will preserve the server encryption
// keys.
void ApplyNigoriUpdate(syncable::WriteTransaction* const trans,
syncable::MutableEntry* const entry,
Cryptographer* cryptographer) {
DCHECK(entry->GetIsUnappliedUpdate());
// We apply the nigori update regardless of whether there's a conflict or
// not in order to preserve any new encrypted types or encryption keys.
// TODO(zea): consider having this return a bool reflecting whether it was a
// valid update or not, and in the case of invalid updates not overwrite the
// local data.
const sync_pb::NigoriSpecifics& nigori =
entry->GetServerSpecifics().nigori();
trans->directory()->GetNigoriHandler()->ApplyNigoriUpdate(nigori, trans);
// Make sure any unsynced changes are properly encrypted as necessary.
// We only perform this if the cryptographer is ready. If not, these are
// re-encrypted at SetDecryptionPassphrase time (via ReEncryptEverything).
// This logic covers the case where the nigori update marked new datatypes
// for encryption, but didn't change the passphrase.
if (cryptographer->is_ready()) {
// Note that we don't bother to encrypt any data for which IS_UNSYNCED
// == false here. The machine that turned on encryption should know about
// and re-encrypt all synced data. It's possible it could get interrupted
// during this process, but we currently reencrypt everything at startup
// as well, so as soon as a client is restarted with this datatype marked
// for encryption, all the data should be updated as necessary.
// If this fails, something is wrong with the cryptographer, but there's
// nothing we can do about it here.
DVLOG(1) << "Received new nigori, encrypting unsynced changes.";
syncable::ProcessUnsyncedChangesForEncryption(trans);
}
if (!entry->GetIsUnsynced()) { // Update only.
UpdateLocalDataFromServerData(trans, entry);
} else { // Conflict.
const sync_pb::EntitySpecifics& server_specifics =
entry->GetServerSpecifics();
const sync_pb::NigoriSpecifics& server_nigori = server_specifics.nigori();
const sync_pb::EntitySpecifics& local_specifics =
entry->GetSpecifics();
const sync_pb::NigoriSpecifics& local_nigori = local_specifics.nigori();
// We initialize the new nigori with the server state, and will override
// it as necessary below.
sync_pb::EntitySpecifics new_specifics = entry->GetServerSpecifics();
sync_pb::NigoriSpecifics* new_nigori = new_specifics.mutable_nigori();
// If the cryptographer is not ready, another client set a new encryption
// passphrase. If we had migrated locally, we will re-migrate when the
// pending keys are provided. If we had set a new custom passphrase locally
// the user will have another chance to set a custom passphrase later
// (assuming they hadn't set a custom passphrase on the other client).
// Therefore, we only attempt to merge the nigori nodes if the cryptographer
// is ready.
// Note: we only update the encryption keybag if we're sure that we aren't
// invalidating the keystore_decryptor_token (i.e. we're either
// not migrated or we copying over all local state).
if (cryptographer->is_ready()) {
if (local_nigori.has_passphrase_type() &&
server_nigori.has_passphrase_type()) {
// They're both migrated, preserve the local nigori if the passphrase
// type is more conservative.
if (server_nigori.passphrase_type() ==
sync_pb::NigoriSpecifics::KEYSTORE_PASSPHRASE &&
local_nigori.passphrase_type() !=
sync_pb::NigoriSpecifics::KEYSTORE_PASSPHRASE) {
DCHECK(local_nigori.passphrase_type() ==
sync_pb::NigoriSpecifics::FROZEN_IMPLICIT_PASSPHRASE ||
local_nigori.passphrase_type() ==
sync_pb::NigoriSpecifics::CUSTOM_PASSPHRASE);
new_nigori->CopyFrom(local_nigori);
cryptographer->GetKeys(new_nigori->mutable_encryption_keybag());
}
} else if (!local_nigori.has_passphrase_type() &&
!server_nigori.has_passphrase_type()) {
// Set the explicit passphrase based on the local state. If the server
// had set an explict passphrase, we should have pending keys, so
// should not reach this code.
// Because neither side is migrated, we don't have to worry about the
// keystore decryptor token.
new_nigori->set_keybag_is_frozen(local_nigori.keybag_is_frozen());
cryptographer->GetKeys(new_nigori->mutable_encryption_keybag());
} else if (local_nigori.has_passphrase_type()) {
// Local is migrated but server is not. Copy over the local migrated
// data.
new_nigori->CopyFrom(local_nigori);
cryptographer->GetKeys(new_nigori->mutable_encryption_keybag());
} // else leave the new nigori with the server state.
}
// Always update to the safest set of encrypted types.
trans->directory()->GetNigoriHandler()->UpdateNigoriFromEncryptedTypes(
new_nigori,
trans);
entry->PutSpecifics(new_specifics);
DVLOG(1) << "Resolving simple conflict, merging nigori nodes: "
<< entry;
conflict_util::OverwriteServerChanges(entry);
UMA_HISTOGRAM_ENUMERATION("Sync.ResolveSimpleConflict",
ConflictResolver::NIGORI_MERGE,
ConflictResolver::CONFLICT_RESOLUTION_SIZE);
}
}
void ApplyControlUpdate(syncable::WriteTransaction* const trans,
syncable::MutableEntry* const entry,
Cryptographer* cryptographer) {
DCHECK_NE(entry->GetServerModelType(), NIGORI);
DCHECK(entry->GetIsUnappliedUpdate());
if (entry->GetIsUnsynced()) {
// We just let the server win all conflicts with control types.
DVLOG(1) << "Ignoring local changes for control update.";
conflict_util::IgnoreLocalChanges(entry);
UMA_HISTOGRAM_ENUMERATION("Sync.ResolveSimpleConflict",
ConflictResolver::OVERWRITE_LOCAL,
ConflictResolver::CONFLICT_RESOLUTION_SIZE);
}
UpdateAttemptResponse response = AttemptToUpdateEntry(
trans, entry, cryptographer);
DCHECK_EQ(SUCCESS, response);
}
} // namespace syncer
|