1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
|
// Magnitude verifies time complexity of a function.
// Magnitude.run can be called multiple times in a single script if desired,
// optionally with different parameters each time.
//
// Usage:
// <script src="../resources/magnitude-perf.js"></script>
// <script>
// function setup(magnitude)
// {
// ...
// }
//
// function test(magnitude)
// {
// ...
// }
// ...
// Magnitude.description('Test that foo is linear in number of nodes.');
// Magnitude.run(setup, test, expected);
// </script>
//
// setup: function to run once before the test-loop. Takes a magnitude
// argument that is the value of 'n'.
// test: function whose runtime is being tested. Also takes a magnitude
// argument.
// expected: one of the run-time constants listed below, e.g.:
// Magnitude.CONSTANT, Magnitude.LINEAR, etc.
if (window.testRunner)
testRunner.dumpAsText();
// Namespace
var Magnitude = {};
// Description of test; prepended to the dumped markup
Magnitude.description = function(description)
{
Magnitude._log(description);
};
// Parameters (customize per test)
// See "Time Complexity Tests" document for details:
// http://dev.chromium.org/developers/testing/time-complexity-tests
// Specify over which range the growth rate should hold:
// 2^n ... 2^(n+k-1) where n = initialExponent, k = numPoints
Magnitude.initialExponent = 0;
Magnitude.numPoints = 8;
// Number of trials to run
// (Trial = compute times for all magnitudes, compute statistical test,
// decide if for this dataset, the data fits the model)
Magnitude.numTrials = 3;
// Fraction of trials that must succeed for test overall to PASS
// (Default 50% means 2 out of 3 must succeed)
Magnitude.successThreshold = 0.50;
// Run = for each magnitude, run test function until pass this time limit,
// then stop and compute average time
Magnitude.millisecondsPerRun = 25;
// Strict tolerance, so noisy tests explicitly state noisiness
// Ok to relax for noisy tests;
// try tolerance = 0.10 or 0.20, and/or trim = 1 or 2 to relax slightly
// tolerance is "max (trimmed) deviation from expected",
// where "expected" is:
// * expected slope (linear, polynomial),
// * median value (constant),
// * predicted value in linear regression (logarithmic).
// For log this often needs to be very large (due to scaling), and 1.00 is ok.
Magnitude.trim = 0; // trim = 1 useful if unusual value on initial run
Magnitude.tolerance = 0.05;
Magnitude.CONSTANT = 'O(1)';
Magnitude.LINEAR = 'O(n)';
Magnitude.POLYNOMIAL = '>=O(n^2)';
// Utility functions
Magnitude._max = function(array) {
return Math.max.apply(null, array);
};
Magnitude._min = function(array) {
return Math.min.apply(null, array);
};
Magnitude._sortTrimArray = function(array, trim) {
// sort array, then trim both ends
// used for computing trimmed maximum absolute deviation
var sorted_array = array.map(Math.abs).sort(function(a, b) { return a - b; });
if (!trim)
return sorted_array;
else
return sorted_array.slice(trim, -trim);
};
Magnitude._relativeDeviations = function(array, ref)
{
return array.map(function(x) { return (x - ref) / ref; });
};
Magnitude._absSortDownTrimTop = function(array, trim) {
// only trim the top of array
// used for computing trimmed maximum absolute deviation
if (trim === undefined)
trim = 0;
return array.map(Math.abs).sort(
function(a, b) { return b - a; }).slice(trim);
};
Magnitude._median = function(array) {
array.sort(function(a, b) { return a - b; });
var len = array.length;
if (!len)
return;
var half = Math.floor(len / 2);
if (len % 2)
return array[half];
return (array[half - 1] + array[half]) / 2;
};
// Logging functions
Magnitude._log = function(msg)
{
if (!Magnitude._container)
Magnitude._container = document.createElement('pre');
Magnitude._container.appendChild(document.createTextNode(msg + '\n'));
};
Magnitude._debug = function(msg)
{
Magnitude._debugLog += msg + '\n';
};
Magnitude._logRunTimes = function()
{
// Print out the magnitudes and times in CSV
// to afford easy copy-paste to a charting application.
Magnitude._debug('magnitudes: ' + Magnitude._magnitudes.join(','));
Magnitude._debug('times: ' + Magnitude._times.join(','));
};
Magnitude._for = function(n, body, callback)
{
var i = 0;
var results = [];
function iteration(result) {
results.push(result);
if (++i === n)
callback(results);
else
body(i, iteration);
}
if (Magnitude._async) {
body(i, iteration);
} else {
for (; i < n; ++i) {
body(i, function(result) {
results.push(result);
});
}
callback(results);
}
};
Magnitude._while = function(condition, body, callback)
{
function iteration() {
if (condition())
body(iteration);
else
callback();
}
if (Magnitude._async) {
iteration();
} else {
while (condition()) {
body(function() {});
}
callback();
}
};
// Main
Magnitude.run = function(setup, test, expected)
{
function runTest(magnitude, callback) {
test(magnitude);
callback();
}
Magnitude._run(setup, runTest, expected, false);
};
Magnitude.runAsync = function(setup, test, expected)
{
if (window.testRunner)
testRunner.waitUntilDone();
window.addEventListener('load', function() {
Magnitude._run(setup, test, expected, true);
}, false);
};
Magnitude._run = function(setup, test, expected, async)
{
Magnitude._async = async;
Magnitude._debugLog = '\nDEBUG LOG:\n';
Magnitude._debug('Expected complexity: ' + expected);
Magnitude._exponents = [];
Magnitude._magnitudes = [];
var maxExponent = Magnitude.initialExponent + Magnitude.numPoints;
for (var i = Magnitude.initialExponent; i < maxExponent; i++) {
Magnitude._exponents.push(i);
Magnitude._magnitudes.push(Math.pow(2, i));
}
Magnitude._numSuccesses = 0;
function runTrial(trialNumber, nextTrial)
{
Magnitude._trialNumber = trialNumber;
Magnitude._debug('\nTrial #' + trialNumber);
Magnitude._for(Magnitude.numPoints, Magnitude._runTime.bind(null, setup, test), completeTrial.bind(null, nextTrial));
}
function completeTrial(nextTrial, times)
{
Magnitude._times = times;
Magnitude._logRunTimes();
switch (expected) {
case Magnitude.CONSTANT:
passed = Magnitude._isConstant();
break;
case Magnitude.LINEAR:
passed = Magnitude._isLinear();
break;
case Magnitude.POLYNOMIAL:
passed = Magnitude._isPolynomial();
break;
default:
Magnitude._log('FAIL: unrecognized order of growth: ' + expected);
passed = false;
break;
}
Magnitude._debug('Trial #' + Magnitude._trialNumber + ': ' +
(passed ? 'SUCCESS' : 'FAILURE'));
if (passed)
Magnitude._numSuccesses++;
nextTrial();
}
Magnitude._for(Magnitude.numTrials, runTrial, Magnitude._finish);
};
Magnitude._finish = function()
{
var neededToPass = Magnitude.numTrials * Magnitude.successThreshold;
Magnitude._debug('Successes: ' + Magnitude._numSuccesses + ', need ' +
neededToPass + ' (' + (100 * Magnitude.successThreshold) + '%) ' +
'to pass');
var passedOverall = (Magnitude._numSuccesses >= neededToPass);
Magnitude._log(passedOverall ? 'PASS' : 'FAIL');
// By default don't log detailed information to layout test results,
// in order to keep expected results consistent from run to run.
if (!window.testRunner || !passedOverall)
Magnitude._log(Magnitude._debugLog);
if (Magnitude._async && window.testRunner)
testRunner.notifyDone();
};
Magnitude._runTime = function(setup, test, pointIndex, callback)
{
var magnitude = Magnitude._magnitudes[pointIndex];
setup(magnitude);
var debugStr = 'run for magnitude ' + magnitude;
if (window.GCController) {
if (GCController.getJSObjectCount)
debugStr += ' jsObjectCountBefore ' + GCController.getJSObjectCount();
GCController.collectAll();
if (GCController.getJSObjectCount)
debugStr += ' jsObjectCountAfter ' + GCController.getJSObjectCount();
}
Magnitude._debug(debugStr);
var nowFunction = window.performance && window.performance.now ?
window.performance.now.bind(window.performance) : Date.now;
// Possibly run multiple times, to deal with delays at end
var runOk = false;
var attempt = 0;
var maxAttempts = 5;
var millisecondsPerIteration;
var totalTimeMilliseconds;
var iterations;
function iteration(nextIteration)
{
var start = nowFunction();
iterations = 0;
totalTimeMilliseconds = 0;
function completeRun(nextRun)
{
iterations++;
totalTimeMilliseconds = nowFunction() - start;
nextRun();
}
Magnitude._while(function() { return totalTimeMilliseconds < Magnitude.millisecondsPerRun; }, function(nextRun) { test(magnitude, completeRun.bind(null, nextRun)); }, completeIteration.bind(null, nextIteration));
}
function completeIteration(nextIteration)
{
millisecondsPerIteration = totalTimeMilliseconds / iterations;
Magnitude._debug(iterations + ' iterations in ' +
totalTimeMilliseconds + ' milliseconds, ' +
'average ' + millisecondsPerIteration +
' milliseconds per iteration');
var overTime = totalTimeMilliseconds - Magnitude.millisecondsPerRun;
var relativeOverTimeTolerance = 0.001;
var overTimeTolerance = Magnitude.millisecondsPerRun *
relativeOverTimeTolerance;
// If overTime is more than the duration of a run,
// there was some delay, which introduces noise.
// Allow a small amount of tolerance.
if (overTime < (millisecondsPerIteration + overTimeTolerance))
runOk = true;
else {
Magnitude._debug('over-time: ' + overTime +
' exceeds average run-time ' + millisecondsPerIteration +
' by more than tolerance of ' + overTimeTolerance +
' assuming delay');
attempt++;
if (attempt < maxAttempts)
Magnitude._debug('Retrying to reduce delay noise');
else {
Magnitude._debug('Failed to reduce delay noise after ' +
maxAttempts + ' attempts, proceeding with noisy data');
runOk = true;
}
}
nextIteration();
}
Magnitude._while(function() { return !runOk; }, iteration, function() { callback(millisecondsPerIteration); });
};
// Auxiliary computations
Magnitude._log2Ratios = function()
{
// Compute base-2 logarithm of ratios of times,
// equivalently the difference of the base-2 logarithms:
// log_2(t[i+1]/t[i]) = log_2(t[i+1]) - log_2(t[i])
// Since times are exponentially spaced (base 2),
// this is the slope of the step on the log-log scale,
// and hence for O(n^k) growth should be k (the exponent).
var ratioArray = [];
var log2RatioArray = [];
for (var i = 0; i < Magnitude.numPoints - 1; i++) {
var ratio = Magnitude._times[i + 1] / Magnitude._times[i];
var log2Ratio = Math.log(ratio) / Math.log(2);
ratioArray.push(ratio);
log2RatioArray.push(log2Ratio);
}
Magnitude._debug('ratios: ' + ratioArray.join(','));
Magnitude._debug('log-ratios (base 2): ' + log2RatioArray.join(','));
return log2RatioArray;
};
// Statistical tests
Magnitude._isConstant = function()
{
// Time should be approximately constant.
// To deal with noise, instead of constant, check that
// (trimmed) abs relative deviation from median is within tolerance of 0.
var times = Magnitude._times;
var median = Magnitude._median(times);
var relativeDeviations = Magnitude._relativeDeviations(times, median);
Magnitude._debug('Median time: ' + median);
Magnitude._debug('Relative deviations: ' + relativeDeviations.join(','));
var trimmedAbsRelativeDeviations = Magnitude._absSortDownTrimTop(relativeDeviations, Magnitude.trim);
Magnitude._debug('Trimmed sorted absolute relative deviations: ' +
trimmedAbsRelativeDeviations.join(','));
var maxAbsDeviation = trimmedAbsRelativeDeviations[0];
Magnitude._debug('Maximum Absolute Relative Deviation: ' + maxAbsDeviation);
return maxAbsDeviation <= Magnitude.tolerance;
};
Magnitude._isLinear = function()
{
// Exponent of a monomial is the slope on the log-log scale.
// Magnitudes are exponentially stepped, so log ratio is slope
// of secant on log-log scale.
// In linear growth, (trimmed) log2Ratio should equal 1, to within tolerance
// (Special case of polynomial; see below for why this is separate.)
//
// Can do better by removing outlying points (and then computing the
// slope between the neighboring points) instead of trimming ratios,
// so we retain the data of the slope of that double step, but since we are
// only looking at the Maximum (Absolute) Deviation, in practice these
// generally amount to the same: given an outlier, the slope coming into
// the point and the slope going out will generally be high/low or low/high,
// and thus both be trimmed, while the slope of the double step will
// generally not be extreme, so not informative.
var logRatios = Magnitude._log2Ratios();
var trimmedLogRatios = Magnitude._sortTrimArray(logRatios, Magnitude.trim);
var minLogRatio = Magnitude._min(trimmedLogRatios);
var maxLogRatio = Magnitude._max(trimmedLogRatios);
var maxAbsDeviation = Math.max(Math.abs(1 - minLogRatio),
Math.abs(maxLogRatio - 1));
Magnitude._debug('Maximum Absolute Deviation: ' + maxAbsDeviation);
Magnitude._debug('Tolerance: ' + Magnitude.tolerance);
return maxAbsDeviation <= Magnitude.tolerance;
};
Magnitude._isPolynomial = function()
{
// Exponent of a monomial is the slope on the log-log scale.
// Magnitudes are exponentially stepped, so log ratio is slope
// of secant on log-log scale.
// Polynomial growth is expected to be O(n^2) or greater,
// so logRatio should be at least 2: check (trimmed) min with tolerance
//
// Linear is fundamentally a special case of polynomial,
// but here not specifying a specific exponent, and instead testing
// that it grows *at least* quadratically (>= 2, rather than = 2 or = 3).
// Thus we have separate functions.
var logRatios = Magnitude._log2Ratios();
var trimmedLogRatios = Magnitude._sortTrimArray(logRatios, Magnitude.trim);
var minLogRatio = Magnitude._min(trimmedLogRatios);
var absDeviationMin = Math.abs(2 - minLogRatio);
Magnitude._debug('Absolute Deviation of Minimum: ' + absDeviationMin);
Magnitude._debug('Tolerance: ' + Magnitude.tolerance);
return absDeviationMin <= Magnitude.tolerance;
};
// Register listener
window.addEventListener('load', function() {
// FIXME: Add Magnitude.waitUntilDone/notifyDone for tests that need to
// operate after the load event has fired.
if (window.testRunner)
document.body.innerHTML = '';
document.body.appendChild(Magnitude._container);
}, false);
|