summaryrefslogtreecommitdiffstats
path: root/third_party/WebKit/Source/modules/webaudio/AudioBufferSourceNode.cpp
blob: 0dceaa90165c3a8b09ab9765a3bb3ef32369de66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
/*
 * Copyright (C) 2010, Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1.  Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "modules/webaudio/AudioBufferSourceNode.h"
#include "bindings/core/v8/ExceptionMessages.h"
#include "bindings/core/v8/ExceptionState.h"
#include "core/dom/ExceptionCode.h"
#include "core/frame/UseCounter.h"
#include "modules/webaudio/AbstractAudioContext.h"
#include "modules/webaudio/AudioNodeOutput.h"
#include "platform/FloatConversion.h"
#include "platform/audio/AudioUtilities.h"
#include "wtf/MainThread.h"
#include "wtf/MathExtras.h"
#include <algorithm>

namespace blink {

const double DefaultGrainDuration = 0.020; // 20ms

// Arbitrary upper limit on playback rate.
// Higher than expected rates can be useful when playing back oversampled buffers
// to minimize linear interpolation aliasing.
const double MaxRate = 1024;

// Number of extra frames to use when determining if a source node can be stopped.  This should be
// at least one rendering quantum, but we add one more quantum for good measure.  This doesn't need
// to be extra precise, just more than one rendering quantum.  See |handleStoppableSourceNode()|.
// FIXME: Expose the rendering quantum somehow instead of hardwiring a value here.
const int kExtraStopFrames = 256;

AudioBufferSourceHandler::AudioBufferSourceHandler(AudioNode& node, float sampleRate, AudioParamHandler& playbackRate, AudioParamHandler& detune)
    : AudioScheduledSourceHandler(NodeTypeAudioBufferSource, node, sampleRate)
    , m_buffer(nullptr)
    , m_playbackRate(playbackRate)
    , m_detune(detune)
    , m_isLooping(false)
    , m_didSetLooping(false)
    , m_loopStart(0)
    , m_loopEnd(0)
    , m_virtualReadIndex(0)
    , m_isGrain(false)
    , m_grainOffset(0.0)
    , m_grainDuration(DefaultGrainDuration)
    , m_minPlaybackRate(1.0)
{
    // Default to mono. A call to setBuffer() will set the number of output
    // channels to that of the buffer.
    addOutput(1);

    initialize();
}

PassRefPtr<AudioBufferSourceHandler> AudioBufferSourceHandler::create(AudioNode& node, float sampleRate, AudioParamHandler& playbackRate, AudioParamHandler& detune)
{
    return adoptRef(new AudioBufferSourceHandler(node, sampleRate, playbackRate, detune));
}

AudioBufferSourceHandler::~AudioBufferSourceHandler()
{
    clearPannerNode();
    uninitialize();
}

void AudioBufferSourceHandler::process(size_t framesToProcess)
{
    AudioBus* outputBus = output(0).bus();

    if (!isInitialized()) {
        outputBus->zero();
        return;
    }

    // The audio thread can't block on this lock, so we call tryLock() instead.
    MutexTryLocker tryLocker(m_processLock);
    if (tryLocker.locked()) {
        if (!buffer()) {
            outputBus->zero();
            return;
        }

        // After calling setBuffer() with a buffer having a different number of channels, there can in rare cases be a slight delay
        // before the output bus is updated to the new number of channels because of use of tryLocks() in the context's updating system.
        // In this case, if the the buffer has just been changed and we're not quite ready yet, then just output silence.
        if (numberOfChannels() != buffer()->numberOfChannels()) {
            outputBus->zero();
            return;
        }

        size_t quantumFrameOffset;
        size_t bufferFramesToProcess;

        updateSchedulingInfo(framesToProcess, outputBus, quantumFrameOffset, bufferFramesToProcess);

        if (!bufferFramesToProcess) {
            outputBus->zero();
            return;
        }

        for (unsigned i = 0; i < outputBus->numberOfChannels(); ++i)
            m_destinationChannels[i] = outputBus->channel(i)->mutableData();

        // Render by reading directly from the buffer.
        if (!renderFromBuffer(outputBus, quantumFrameOffset, bufferFramesToProcess)) {
            outputBus->zero();
            return;
        }

        outputBus->clearSilentFlag();
    } else {
        // Too bad - the tryLock() failed.  We must be in the middle of changing buffers and were already outputting silence anyway.
        outputBus->zero();
    }
}

// Returns true if we're finished.
bool AudioBufferSourceHandler::renderSilenceAndFinishIfNotLooping(AudioBus*, unsigned index, size_t framesToProcess)
{
    if (!loop()) {
        // If we're not looping, then stop playing when we get to the end.

        if (framesToProcess > 0) {
            // We're not looping and we've reached the end of the sample data, but we still need to provide more output,
            // so generate silence for the remaining.
            for (unsigned i = 0; i < numberOfChannels(); ++i)
                memset(m_destinationChannels[i] + index, 0, sizeof(float) * framesToProcess);
        }

        finish();
        return true;
    }
    return false;
}

bool AudioBufferSourceHandler::renderFromBuffer(AudioBus* bus, unsigned destinationFrameOffset, size_t numberOfFrames)
{
    ASSERT(context()->isAudioThread());

    // Basic sanity checking
    ASSERT(bus);
    ASSERT(buffer());
    if (!bus || !buffer())
        return false;

    unsigned numberOfChannels = this->numberOfChannels();
    unsigned busNumberOfChannels = bus->numberOfChannels();

    bool channelCountGood = numberOfChannels && numberOfChannels == busNumberOfChannels;
    ASSERT(channelCountGood);
    if (!channelCountGood)
        return false;

    // Sanity check destinationFrameOffset, numberOfFrames.
    size_t destinationLength = bus->length();

    bool isLengthGood = destinationLength <= 4096 && numberOfFrames <= 4096;
    ASSERT(isLengthGood);
    if (!isLengthGood)
        return false;

    bool isOffsetGood = destinationFrameOffset <= destinationLength && destinationFrameOffset + numberOfFrames <= destinationLength;
    ASSERT(isOffsetGood);
    if (!isOffsetGood)
        return false;

    // Potentially zero out initial frames leading up to the offset.
    if (destinationFrameOffset) {
        for (unsigned i = 0; i < numberOfChannels; ++i)
            memset(m_destinationChannels[i], 0, sizeof(float) * destinationFrameOffset);
    }

    // Offset the pointers to the correct offset frame.
    unsigned writeIndex = destinationFrameOffset;

    size_t bufferLength = buffer()->length();
    double bufferSampleRate = buffer()->sampleRate();

    // Avoid converting from time to sample-frames twice by computing
    // the grain end time first before computing the sample frame.
    unsigned endFrame = m_isGrain ? AudioUtilities::timeToSampleFrame(m_grainOffset + m_grainDuration, bufferSampleRate) : bufferLength;

    // This is a HACK to allow for HRTF tail-time - avoids glitch at end.
    // FIXME: implement tailTime for each AudioNode for a more general solution to this problem.
    // https://bugs.webkit.org/show_bug.cgi?id=77224
    if (m_isGrain)
        endFrame += 512;

    // Do some sanity checking.
    if (endFrame > bufferLength)
        endFrame = bufferLength;

    // If the .loop attribute is true, then values of m_loopStart == 0 && m_loopEnd == 0 implies
    // that we should use the entire buffer as the loop, otherwise use the loop values in m_loopStart and m_loopEnd.
    double virtualEndFrame = endFrame;
    double virtualDeltaFrames = endFrame;

    if (loop() && (m_loopStart || m_loopEnd) && m_loopStart >= 0 && m_loopEnd > 0 && m_loopStart < m_loopEnd) {
        // Convert from seconds to sample-frames.
        double loopStartFrame = m_loopStart * buffer()->sampleRate();
        double loopEndFrame = m_loopEnd * buffer()->sampleRate();

        virtualEndFrame = std::min(loopEndFrame, virtualEndFrame);
        virtualDeltaFrames = virtualEndFrame - loopStartFrame;
    }

    // If we're looping and the offset (virtualReadIndex) is past the end of the loop, wrap back to
    // the beginning of the loop. For other cases, nothing needs to be done.
    if (loop() && m_virtualReadIndex >= virtualEndFrame)
        m_virtualReadIndex = (m_loopStart < 0) ? 0 : (m_loopStart * buffer()->sampleRate());

    double computedPlaybackRate = computePlaybackRate();

    // Sanity check that our playback rate isn't larger than the loop size.
    if (computedPlaybackRate > virtualDeltaFrames)
        return false;

    // Get local copy.
    double virtualReadIndex = m_virtualReadIndex;

    // Render loop - reading from the source buffer to the destination using linear interpolation.
    int framesToProcess = numberOfFrames;

    const float** sourceChannels = m_sourceChannels.get();
    float** destinationChannels = m_destinationChannels.get();

    ASSERT(virtualReadIndex >= 0);
    ASSERT(virtualDeltaFrames >= 0);
    ASSERT(virtualEndFrame >= 0);

    // Optimize for the very common case of playing back with computedPlaybackRate == 1.
    // We can avoid the linear interpolation.
    if (computedPlaybackRate == 1 && virtualReadIndex == floor(virtualReadIndex)
        && virtualDeltaFrames == floor(virtualDeltaFrames)
        && virtualEndFrame == floor(virtualEndFrame)) {
        unsigned readIndex = static_cast<unsigned>(virtualReadIndex);
        unsigned deltaFrames = static_cast<unsigned>(virtualDeltaFrames);
        endFrame = static_cast<unsigned>(virtualEndFrame);
        while (framesToProcess > 0) {
            int framesToEnd = endFrame - readIndex;
            int framesThisTime = std::min(framesToProcess, framesToEnd);
            framesThisTime = std::max(0, framesThisTime);

            for (unsigned i = 0; i < numberOfChannels; ++i)
                memcpy(destinationChannels[i] + writeIndex, sourceChannels[i] + readIndex, sizeof(float) * framesThisTime);

            writeIndex += framesThisTime;
            readIndex += framesThisTime;
            framesToProcess -= framesThisTime;

            // It can happen that framesThisTime is 0. Assert that we will actually exit the loop in
            // this case.  framesThisTime is 0 only if readIndex >= endFrame;
            ASSERT(framesThisTime ? true : readIndex >= endFrame);

            // Wrap-around.
            if (readIndex >= endFrame) {
                readIndex -= deltaFrames;
                if (renderSilenceAndFinishIfNotLooping(bus, writeIndex, framesToProcess))
                    break;
            }
        }
        virtualReadIndex = readIndex;
    } else {
        while (framesToProcess--) {
            unsigned readIndex = static_cast<unsigned>(virtualReadIndex);
            double interpolationFactor = virtualReadIndex - readIndex;

            // For linear interpolation we need the next sample-frame too.
            unsigned readIndex2 = readIndex + 1;
            if (readIndex2 >= bufferLength) {
                if (loop()) {
                    // Make sure to wrap around at the end of the buffer.
                    readIndex2 = static_cast<unsigned>(virtualReadIndex + 1 - virtualDeltaFrames);
                } else {
                    readIndex2 = readIndex;
                }
            }

            // Final sanity check on buffer access.
            // FIXME: as an optimization, try to get rid of this inner-loop check and put assertions and guards before the loop.
            if (readIndex >= bufferLength || readIndex2 >= bufferLength)
                break;

            // Linear interpolation.
            for (unsigned i = 0; i < numberOfChannels; ++i) {
                float* destination = destinationChannels[i];
                const float* source = sourceChannels[i];

                double sample1 = source[readIndex];
                double sample2 = source[readIndex2];
                double sample = (1.0 - interpolationFactor) * sample1 + interpolationFactor * sample2;

                destination[writeIndex] = narrowPrecisionToFloat(sample);
            }
            writeIndex++;

            virtualReadIndex += computedPlaybackRate;

            // Wrap-around, retaining sub-sample position since virtualReadIndex is floating-point.
            if (virtualReadIndex >= virtualEndFrame) {
                virtualReadIndex -= virtualDeltaFrames;
                if (renderSilenceAndFinishIfNotLooping(bus, writeIndex, framesToProcess))
                    break;
            }
        }
    }

    bus->clearSilentFlag();

    m_virtualReadIndex = virtualReadIndex;

    return true;
}


void AudioBufferSourceHandler::setBuffer(AudioBuffer* buffer, ExceptionState& exceptionState)
{
    ASSERT(isMainThread());

    if (m_buffer) {
        exceptionState.throwDOMException(
            InvalidStateError,
            "Cannot set buffer after it has been already been set");
        return;
    }

    // The context must be locked since changing the buffer can re-configure the number of channels that are output.
    AbstractAudioContext::AutoLocker contextLocker(context());

    // This synchronizes with process().
    MutexLocker processLocker(m_processLock);

    if (buffer) {
        // Do any necesssary re-configuration to the buffer's number of channels.
        unsigned numberOfChannels = buffer->numberOfChannels();

        // This should not be possible since AudioBuffers can't be created with too many channels
        // either.
        if (numberOfChannels > AbstractAudioContext::maxNumberOfChannels()) {
            exceptionState.throwDOMException(
                NotSupportedError,
                ExceptionMessages::indexOutsideRange(
                    "number of input channels",
                    numberOfChannels,
                    1u,
                    ExceptionMessages::InclusiveBound,
                    AbstractAudioContext::maxNumberOfChannels(),
                    ExceptionMessages::InclusiveBound));
            return;
        }

        output(0).setNumberOfChannels(numberOfChannels);

        m_sourceChannels = adoptArrayPtr(new const float* [numberOfChannels]);
        m_destinationChannels = adoptArrayPtr(new float* [numberOfChannels]);

        for (unsigned i = 0; i < numberOfChannels; ++i)
            m_sourceChannels[i] = buffer->getChannelData(i)->data();

        // If this is a grain (as set by a previous call to start()), validate the grain parameters
        // now since it wasn't validated when start was called (because there was no buffer then).
        if (m_isGrain)
            clampGrainParameters(buffer);
    }

    m_virtualReadIndex = 0;
    m_buffer = buffer;
}

unsigned AudioBufferSourceHandler::numberOfChannels()
{
    return output(0).numberOfChannels();
}

void AudioBufferSourceHandler::clampGrainParameters(const AudioBuffer* buffer)
{
    ASSERT(buffer);

    // We have a buffer so we can clip the offset and duration to lie within the buffer.
    double bufferDuration = buffer->duration();

    m_grainOffset = clampTo(m_grainOffset, 0.0, bufferDuration);

    // If the duration was not explicitly given, use the buffer duration to set the grain
    // duration. Otherwise, we want to use the user-specified value, of course.
    if (!m_isDurationGiven)
        m_grainDuration = bufferDuration - m_grainOffset;

    if (m_isDurationGiven && loop()) {
        // We're looping a grain with a grain duration specified. Schedule the loop to stop after
        // grainDuration seconds after starting, possibly running the loop multiple times if
        // grainDuration is larger than the buffer duration. The net effect is as if the user called
        // stop(when + grainDuration).
        m_grainDuration = clampTo(m_grainDuration, 0.0, std::numeric_limits<double>::infinity());
        m_endTime = m_startTime + m_grainDuration;
    } else {
        m_grainDuration = clampTo(m_grainDuration, 0.0, bufferDuration - m_grainOffset);
    }

    // We call timeToSampleFrame here since at playbackRate == 1 we don't want to go through
    // linear interpolation at a sub-sample position since it will degrade the quality. When
    // aligned to the sample-frame the playback will be identical to the PCM data stored in the
    // buffer. Since playbackRate == 1 is very common, it's worth considering quality.
    m_virtualReadIndex = AudioUtilities::timeToSampleFrame(m_grainOffset, buffer->sampleRate());
}

void AudioBufferSourceHandler::start(double when, ExceptionState& exceptionState)
{
    AudioScheduledSourceHandler::start(when, exceptionState);
}

void AudioBufferSourceHandler::start(double when, double grainOffset, ExceptionState& exceptionState)
{
    startSource(when, grainOffset, buffer() ? buffer()->duration() : 0, false, exceptionState);
}

void AudioBufferSourceHandler::start(double when, double grainOffset, double grainDuration, ExceptionState& exceptionState)
{
    startSource(when, grainOffset, grainDuration, true, exceptionState);
}

void AudioBufferSourceHandler::startSource(double when, double grainOffset, double grainDuration, bool isDurationGiven, ExceptionState& exceptionState)
{
    ASSERT(isMainThread());

    if (playbackState() != UNSCHEDULED_STATE) {
        exceptionState.throwDOMException(
            InvalidStateError,
            "cannot call start more than once.");
        return;
    }

    if (when < 0) {
        exceptionState.throwDOMException(
            InvalidStateError,
            ExceptionMessages::indexExceedsMinimumBound(
                "start time",
                when,
                0.0));
        return;
    }

    if (grainOffset < 0) {
        exceptionState.throwDOMException(
            InvalidStateError,
            ExceptionMessages::indexExceedsMinimumBound(
                "offset",
                grainOffset,
                0.0));
        return;
    }

    if (grainDuration < 0) {
        exceptionState.throwDOMException(
            InvalidStateError,
            ExceptionMessages::indexExceedsMinimumBound(
                "duration",
                grainDuration,
                0.0));
        return;
    }

    // The node is started. Add a reference to keep us alive so that audio
    // will eventually get played even if Javascript should drop all references
    // to this node. The reference will get dropped when the source has finished
    // playing.
    context()->notifySourceNodeStartedProcessing(node());

    // This synchronizes with process(). updateSchedulingInfo will read some of the variables being
    // set here.
    MutexLocker processLocker(m_processLock);

    m_isDurationGiven = isDurationGiven;
    m_isGrain = true;
    m_grainOffset = grainOffset;
    m_grainDuration = grainDuration;

    // If |when| < currentTime, the source must start now according to the spec.
    // So just set startTime to currentTime in this case to start the source now.
    m_startTime = std::max(when, context()->currentTime());

    if (buffer())
        clampGrainParameters(buffer());

    setPlaybackState(SCHEDULED_STATE);
}

double AudioBufferSourceHandler::computePlaybackRate()
{
    double dopplerRate = 1;
    if (m_pannerNode)
        dopplerRate = m_pannerNode->dopplerRate();

    // Incorporate buffer's sample-rate versus AbstractAudioContext's sample-rate.
    // Normally it's not an issue because buffers are loaded at the
    // AbstractAudioContext's sample-rate, but we can handle it in any case.
    double sampleRateFactor = 1.0;
    if (buffer()) {
        // Use doubles to compute this to full accuracy.
        sampleRateFactor = buffer()->sampleRate() / static_cast<double>(sampleRate());
    }

    // Use finalValue() to incorporate changes of AudioParamTimeline and
    // AudioSummingJunction from m_playbackRate AudioParam.
    double basePlaybackRate = m_playbackRate->finalValue();

    double finalPlaybackRate = dopplerRate * sampleRateFactor * basePlaybackRate;

    // Take the detune value into account for the final playback rate.
    finalPlaybackRate *= pow(2, m_detune->finalValue() / 1200);

    // Sanity check the total rate.  It's very important that the resampler not
    // get any bad rate values.
    finalPlaybackRate = clampTo(finalPlaybackRate, 0.0, MaxRate);

    bool isPlaybackRateValid = !std::isnan(finalPlaybackRate) && !std::isinf(finalPlaybackRate);
    ASSERT(isPlaybackRateValid);

    if (!isPlaybackRateValid)
        finalPlaybackRate = 1.0;

    // Record the minimum playback rate for use by handleStoppableSourceNode.
    m_minPlaybackRate = std::min(finalPlaybackRate, m_minPlaybackRate);

    return finalPlaybackRate;
}

bool AudioBufferSourceHandler::propagatesSilence() const
{
    return !isPlayingOrScheduled() || hasFinished() || !m_buffer;
}

void AudioBufferSourceHandler::setPannerNode(PannerHandler* pannerNode)
{
    if (m_pannerNode != pannerNode && !hasFinished()) {
        RefPtr<PannerHandler> oldPannerNode(m_pannerNode.release());
        m_pannerNode = pannerNode;
        if (pannerNode)
            pannerNode->makeConnection();
        if (oldPannerNode)
            oldPannerNode->breakConnection();
    }
}

void AudioBufferSourceHandler::clearPannerNode()
{
    if (m_pannerNode) {
        m_pannerNode->breakConnection();
        m_pannerNode.clear();
    }
}

void AudioBufferSourceHandler::handleStoppableSourceNode()
{
    // If the source node is not looping, and we have a buffer, we can determine when the source
    // would stop playing.  This is intended to handle the (uncommon) scenario where start() has
    // been called but is never connected to the destination (directly or indirectly).  By stopping
    // the node, the node can be collected.  Otherwise, the node will never get collected, leaking
    // memory.
    //
    // If looping was ever done (m_didSetLooping = true), give up.  We can't easily determine how
    // long we looped so we don't know the actual duration thus far, so don't try to do anything
    // fancy.
    if (!m_didSetLooping && buffer() && isPlayingOrScheduled() && m_minPlaybackRate > 0) {
        // Adjust the duration to include the playback rate. Only need to account for rate < 1
        // which makes the sound last longer.  For rate >= 1, the source stops sooner, but that's
        // ok.
        double actualDuration = buffer()->duration() / m_minPlaybackRate;

        double stopTime = m_startTime + actualDuration;

        // See crbug.com/478301. If a source node is started via start(), the source may not start
        // at that time but one quantum (128 frames) later.  But we compute the stop time based on
        // the start time and the duration, so we end up stopping one quantum early.  Thus, add a
        // little extra time; we just need to stop the source sometime after it should have stopped
        // if it hadn't already.  We don't need to be super precise on when to stop.
        double extraStopTime = kExtraStopFrames / static_cast<double>(context()->sampleRate());

        stopTime += extraStopTime;
        if (context()->currentTime() > stopTime) {
            // The context time has passed the time when the source nodes should have stopped
            // playing. Stop the node now and deref it. (But don't run the onEnded event because the
            // source never actually played.)
            finishWithoutOnEnded();
        }
    }
}

void AudioBufferSourceHandler::finish()
{
    clearPannerNode();
    ASSERT(!m_pannerNode);
    AudioScheduledSourceHandler::finish();
}

// ----------------------------------------------------------------
AudioBufferSourceNode::AudioBufferSourceNode(AbstractAudioContext& context, float sampleRate)
    : AudioScheduledSourceNode(context)
    , m_playbackRate(AudioParam::create(context, 1.0))
    , m_detune(AudioParam::create(context, 0.0))
{
    setHandler(AudioBufferSourceHandler::create(*this, sampleRate, m_playbackRate->handler(), m_detune->handler()));
}

AudioBufferSourceNode* AudioBufferSourceNode::create(AbstractAudioContext& context, float sampleRate)
{
    return new AudioBufferSourceNode(context, sampleRate);
}

DEFINE_TRACE(AudioBufferSourceNode)
{
    visitor->trace(m_playbackRate);
    visitor->trace(m_detune);
    AudioScheduledSourceNode::trace(visitor);
}

AudioBufferSourceHandler& AudioBufferSourceNode::audioBufferSourceHandler() const
{
    return static_cast<AudioBufferSourceHandler&>(handler());
}

AudioBuffer* AudioBufferSourceNode::buffer() const
{
    return audioBufferSourceHandler().buffer();
}

void AudioBufferSourceNode::setBuffer(AudioBuffer* newBuffer, ExceptionState& exceptionState)
{
    audioBufferSourceHandler().setBuffer(newBuffer, exceptionState);
}

AudioParam* AudioBufferSourceNode::playbackRate() const
{
    return m_playbackRate;
}

AudioParam* AudioBufferSourceNode::detune() const
{
    return m_detune;
}

bool AudioBufferSourceNode::loop() const
{
    return audioBufferSourceHandler().loop();
}

void AudioBufferSourceNode::setLoop(bool loop)
{
    audioBufferSourceHandler().setLoop(loop);
}

double AudioBufferSourceNode::loopStart() const
{
    return audioBufferSourceHandler().loopStart();
}

void AudioBufferSourceNode::setLoopStart(double loopStart)
{
    audioBufferSourceHandler().setLoopStart(loopStart);
}

double AudioBufferSourceNode::loopEnd() const
{
    return audioBufferSourceHandler().loopEnd();
}

void AudioBufferSourceNode::setLoopEnd(double loopEnd)
{
    audioBufferSourceHandler().setLoopEnd(loopEnd);
}

void AudioBufferSourceNode::start(ExceptionState& exceptionState)
{
    audioBufferSourceHandler().start(0, exceptionState);
}

void AudioBufferSourceNode::start(double when, ExceptionState& exceptionState)
{
    audioBufferSourceHandler().start(when, exceptionState);
}

void AudioBufferSourceNode::start(double when, double grainOffset, ExceptionState& exceptionState)
{
    audioBufferSourceHandler().start(when, grainOffset, exceptionState);
}

void AudioBufferSourceNode::start(double when, double grainOffset, double grainDuration, ExceptionState& exceptionState)
{
    audioBufferSourceHandler().start(when, grainOffset, grainDuration, exceptionState);
}

} // namespace blink