summaryrefslogtreecommitdiffstats
path: root/third_party/WebKit/Source/modules/webaudio/PeriodicWave.cpp
blob: db4c8b2cc9a016be3fa4e516175edb83966d166c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*
 * Copyright (C) 2012 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
 *     its contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "modules/webaudio/PeriodicWave.h"
#include "modules/webaudio/OscillatorNode.h"
#include "platform/audio/FFTFrame.h"
#include "platform/audio/VectorMath.h"
#include <algorithm>

namespace blink {

// The number of bands per octave.  Each octave will have this many entries in the wave tables.
const unsigned kNumberOfOctaveBands = 3;

// The max length of a periodic wave. This must be a power of two greater than or equal to 2048 and
// must be supported by the FFT routines.
const unsigned kMaxPeriodicWaveSize = 16384;

const float CentsPerRange = 1200 / kNumberOfOctaveBands;

using namespace VectorMath;

PeriodicWave* PeriodicWave::create(float sampleRate, DOMFloat32Array* real, DOMFloat32Array* imag, bool disableNormalization)
{
    bool isGood = real && imag && real->length() == imag->length();
    ASSERT(isGood);
    if (isGood) {
        PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
        size_t numberOfComponents = real->length();
        periodicWave->createBandLimitedTables(real->data(), imag->data(), numberOfComponents, disableNormalization);
        return periodicWave;
    }
    return nullptr;
}

PeriodicWave* PeriodicWave::createSine(float sampleRate)
{
    PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
    periodicWave->generateBasicWaveform(OscillatorHandler::SINE);
    return periodicWave;
}

PeriodicWave* PeriodicWave::createSquare(float sampleRate)
{
    PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
    periodicWave->generateBasicWaveform(OscillatorHandler::SQUARE);
    return periodicWave;
}

PeriodicWave* PeriodicWave::createSawtooth(float sampleRate)
{
    PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
    periodicWave->generateBasicWaveform(OscillatorHandler::SAWTOOTH);
    return periodicWave;
}

PeriodicWave* PeriodicWave::createTriangle(float sampleRate)
{
    PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
    periodicWave->generateBasicWaveform(OscillatorHandler::TRIANGLE);
    return periodicWave;
}

PeriodicWave::PeriodicWave(float sampleRate)
    : m_v8ExternalMemory(0)
    , m_sampleRate(sampleRate)
    , m_centsPerRange(CentsPerRange)
{
    float nyquist = 0.5 * m_sampleRate;
    m_lowestFundamentalFrequency = nyquist / maxNumberOfPartials();
    m_rateScale = periodicWaveSize() / m_sampleRate;
    // Compute the number of ranges needed to cover the entire frequency range, assuming
    // kNumberOfOctaveBands per octave.
    m_numberOfRanges = 0.5 + kNumberOfOctaveBands * log2f(periodicWaveSize());
}

PeriodicWave::~PeriodicWave()
{
    adjustV8ExternalMemory(-static_cast<int64_t>(m_v8ExternalMemory));
}

unsigned PeriodicWave::periodicWaveSize() const
{
    // Choose an appropriate wave size for the given sample rate.  This allows us to use shorter
    // FFTs when possible to limit the complexity.  The breakpoints here are somewhat arbitrary, but
    // we want sample rates around 44.1 kHz or so to have a size of 4096 to preserve backward
    // compatibility.
    if (m_sampleRate <= 24000) {
        return 2048;
    }

    if (m_sampleRate <= 88200) {
        return 4096;
    }

    return kMaxPeriodicWaveSize;
}

unsigned PeriodicWave::maxNumberOfPartials() const
{
    return periodicWaveSize() / 2;
}

void PeriodicWave::waveDataForFundamentalFrequency(float fundamentalFrequency, float*& lowerWaveData, float*& higherWaveData, float& tableInterpolationFactor)
{
    // Negative frequencies are allowed, in which case we alias to the positive frequency.
    fundamentalFrequency = fabsf(fundamentalFrequency);

    // Calculate the pitch range.
    float ratio = fundamentalFrequency > 0 ? fundamentalFrequency / m_lowestFundamentalFrequency : 0.5;
    float centsAboveLowestFrequency = log2f(ratio) * 1200;

    // Add one to round-up to the next range just in time to truncate partials before aliasing occurs.
    float pitchRange = 1 + centsAboveLowestFrequency / m_centsPerRange;

    pitchRange = std::max(pitchRange, 0.0f);
    pitchRange = std::min(pitchRange, static_cast<float>(numberOfRanges() - 1));

    // The words "lower" and "higher" refer to the table data having the lower and higher numbers of partials.
    // It's a little confusing since the range index gets larger the more partials we cull out.
    // So the lower table data will have a larger range index.
    unsigned rangeIndex1 = static_cast<unsigned>(pitchRange);
    unsigned rangeIndex2 = rangeIndex1 < numberOfRanges() - 1 ? rangeIndex1 + 1 : rangeIndex1;

    lowerWaveData = m_bandLimitedTables[rangeIndex2]->data();
    higherWaveData = m_bandLimitedTables[rangeIndex1]->data();

    // Ranges from 0 -> 1 to interpolate between lower -> higher.
    tableInterpolationFactor = pitchRange - rangeIndex1;
}

unsigned PeriodicWave::numberOfPartialsForRange(unsigned rangeIndex) const
{
    // Number of cents below nyquist where we cull partials.
    float centsToCull = rangeIndex * m_centsPerRange;

    // A value from 0 -> 1 representing what fraction of the partials to keep.
    float cullingScale = pow(2, -centsToCull / 1200);

    // The very top range will have all the partials culled.
    unsigned numberOfPartials = cullingScale * maxNumberOfPartials();

    return numberOfPartials;
}

// Tell V8 about the memory we're using so it can properly schedule garbage collects.
void PeriodicWave::adjustV8ExternalMemory(int delta)
{
    v8::Isolate::GetCurrent()->AdjustAmountOfExternalAllocatedMemory(delta);
    m_v8ExternalMemory += delta;
}

// Convert into time-domain wave buffers.
// One table is created for each range for non-aliasing playback at different playback rates.
// Thus, higher ranges have more high-frequency partials culled out.
void PeriodicWave::createBandLimitedTables(const float* realData, const float* imagData, unsigned numberOfComponents, bool disableNormalization)
{
    // TODO(rtoy): Figure out why this needs to be 0.5 when normalization is disabled.
    float normalizationScale = 0.5;

    unsigned fftSize = periodicWaveSize();
    unsigned halfSize = fftSize / 2;
    unsigned i;

    numberOfComponents = std::min(numberOfComponents, halfSize);

    m_bandLimitedTables.reserveCapacity(numberOfRanges());

    FFTFrame frame(fftSize);
    for (unsigned rangeIndex = 0; rangeIndex < numberOfRanges(); ++rangeIndex) {
        // This FFTFrame is used to cull partials (represented by frequency bins).
        float* realP = frame.realData();
        float* imagP = frame.imagData();

        // Copy from loaded frequency data and generate the complex conjugate because of the way the
        // inverse FFT is defined versus the values in the arrays.  Need to scale the data by
        // fftSize to remove the scaling that the inverse IFFT would do.
        float scale = fftSize;
        vsmul(realData, 1, &scale, realP, 1, numberOfComponents);
        scale = -scale;
        vsmul(imagData, 1, &scale, imagP, 1, numberOfComponents);

        // Find the starting bin where we should start culling.  We need to clear out the highest
        // frequencies to band-limit the waveform.
        unsigned numberOfPartials = numberOfPartialsForRange(rangeIndex);

        // If fewer components were provided than 1/2 FFT size, then clear the remaining bins.
        // We also need to cull the aliasing partials for this pitch range.
        for (i = std::min(numberOfComponents, numberOfPartials + 1); i < halfSize; ++i) {
            realP[i] = 0;
            imagP[i] = 0;
        }

        // Clear packed-nyquist and any DC-offset.
        realP[0] = 0;
        imagP[0] = 0;

        // Create the band-limited table.
        unsigned waveSize = periodicWaveSize();
        OwnPtr<AudioFloatArray> table = adoptPtr(new AudioFloatArray(waveSize));
        adjustV8ExternalMemory(waveSize * sizeof(float));
        m_bandLimitedTables.append(table.release());

        // Apply an inverse FFT to generate the time-domain table data.
        float* data = m_bandLimitedTables[rangeIndex]->data();
        frame.doInverseFFT(data);

        // For the first range (which has the highest power), calculate its peak value then compute normalization scale.
        if (!disableNormalization) {
            if (!rangeIndex) {
                float maxValue;
                vmaxmgv(data, 1, &maxValue, fftSize);

                if (maxValue)
                    normalizationScale = 1.0f / maxValue;
            }
        }

        // Apply normalization scale.
        vsmul(data, 1, &normalizationScale, data, 1, fftSize);
    }
}

void PeriodicWave::generateBasicWaveform(int shape)
{
    unsigned fftSize = periodicWaveSize();
    unsigned halfSize = fftSize / 2;

    AudioFloatArray real(halfSize);
    AudioFloatArray imag(halfSize);
    float* realP = real.data();
    float* imagP = imag.data();

    // Clear DC and Nyquist.
    realP[0] = 0;
    imagP[0] = 0;

    for (unsigned n = 1; n < halfSize; ++n) {
        float piFactor = 2 / (n * piFloat);

        // All waveforms are odd functions with a positive slope at time 0. Hence the coefficients
        // for cos() are always 0.

        // Fourier coefficients according to standard definition:
        // b = 1/pi*integrate(f(x)*sin(n*x), x, -pi, pi)
        //   = 2/pi*integrate(f(x)*sin(n*x), x, 0, pi)
        // since f(x) is an odd function.

        float b; // Coefficient for sin().

        // Calculate Fourier coefficients depending on the shape. Note that the overall scaling
        // (magnitude) of the waveforms is normalized in createBandLimitedTables().
        switch (shape) {
        case OscillatorHandler::SINE:
            // Standard sine wave function.
            b = (n == 1) ? 1 : 0;
            break;
        case OscillatorHandler::SQUARE:
            // Square-shaped waveform with the first half its maximum value and the second half its
            // minimum value.
            //
            // See http://mathworld.wolfram.com/FourierSeriesSquareWave.html
            //
            // b[n] = 2/n/pi*(1-(-1)^n)
            //      = 4/n/pi for n odd and 0 otherwise.
            //      = 2*(2/(n*pi)) for n odd
            b = (n & 1) ? 2 * piFactor : 0;
            break;
        case OscillatorHandler::SAWTOOTH:
            // Sawtooth-shaped waveform with the first half ramping from zero to maximum and the
            // second half from minimum to zero.
            //
            // b[n] = -2*(-1)^n/pi/n
            //      = (2/(n*pi))*(-1)^(n+1)
            b = piFactor * ((n & 1) ? 1 : -1);
            break;
        case OscillatorHandler::TRIANGLE:
            // Triangle-shaped waveform going from 0 at time 0 to 1 at time pi/2 and back to 0 at
            // time pi.
            //
            // See http://mathworld.wolfram.com/FourierSeriesTriangleWave.html
            //
            // b[n] = 8*sin(pi*k/2)/(pi*k)^2
            //      = 8/pi^2/n^2*(-1)^((n-1)/2) for n odd and 0 otherwise
            //      = 2*(2/(n*pi))^2 * (-1)^((n-1)/2)
            if (n & 1) {
                b = 2 * (piFactor * piFactor) * ((((n - 1) >> 1) & 1) ? -1 : 1);
            } else {
                b = 0;
            }
            break;
        default:
            ASSERT_NOT_REACHED();
            b = 0;
            break;
        }

        realP[n] = 0;
        imagP[n] = b;
    }

    createBandLimitedTables(realP, imagP, halfSize, false);
}

} // namespace blink