1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
/*
* Copyright (C) 2010, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "modules/webaudio/ScriptProcessorNode.h"
#include "bindings/core/v8/ExceptionState.h"
#include "core/dom/CrossThreadTask.h"
#include "core/dom/ExceptionCode.h"
#include "core/dom/ExecutionContext.h"
#include "modules/webaudio/AbstractAudioContext.h"
#include "modules/webaudio/AudioBuffer.h"
#include "modules/webaudio/AudioNodeInput.h"
#include "modules/webaudio/AudioNodeOutput.h"
#include "modules/webaudio/AudioProcessingEvent.h"
#include "public/platform/Platform.h"
namespace blink {
ScriptProcessorHandler::ScriptProcessorHandler(AudioNode& node, float sampleRate, size_t bufferSize, unsigned numberOfInputChannels, unsigned numberOfOutputChannels)
: AudioHandler(NodeTypeJavaScript, node, sampleRate)
, m_doubleBufferIndex(0)
, m_bufferSize(bufferSize)
, m_bufferReadWriteIndex(0)
, m_numberOfInputChannels(numberOfInputChannels)
, m_numberOfOutputChannels(numberOfOutputChannels)
, m_internalInputBus(AudioBus::create(numberOfInputChannels, ProcessingSizeInFrames, false))
{
// Regardless of the allowed buffer sizes, we still need to process at the granularity of the AudioNode.
if (m_bufferSize < ProcessingSizeInFrames)
m_bufferSize = ProcessingSizeInFrames;
ASSERT(numberOfInputChannels <= AbstractAudioContext::maxNumberOfChannels());
addInput();
addOutput(numberOfOutputChannels);
m_channelCount = numberOfInputChannels;
m_channelCountMode = Explicit;
initialize();
}
PassRefPtr<ScriptProcessorHandler> ScriptProcessorHandler::create(AudioNode& node, float sampleRate, size_t bufferSize, unsigned numberOfInputChannels, unsigned numberOfOutputChannels)
{
return adoptRef(new ScriptProcessorHandler(node, sampleRate, bufferSize, numberOfInputChannels, numberOfOutputChannels));
}
ScriptProcessorHandler::~ScriptProcessorHandler()
{
uninitialize();
}
void ScriptProcessorHandler::initialize()
{
if (isInitialized())
return;
float sampleRate = context()->sampleRate();
// Create double buffers on both the input and output sides.
// These AudioBuffers will be directly accessed in the main thread by JavaScript.
for (unsigned i = 0; i < 2; ++i) {
AudioBuffer* inputBuffer = m_numberOfInputChannels ? AudioBuffer::create(m_numberOfInputChannels, bufferSize(), sampleRate) : 0;
AudioBuffer* outputBuffer = m_numberOfOutputChannels ? AudioBuffer::create(m_numberOfOutputChannels, bufferSize(), sampleRate) : 0;
m_inputBuffers.append(inputBuffer);
m_outputBuffers.append(outputBuffer);
}
AudioHandler::initialize();
}
void ScriptProcessorHandler::process(size_t framesToProcess)
{
// Discussion about inputs and outputs:
// As in other AudioNodes, ScriptProcessorNode uses an AudioBus for its input and output (see inputBus and outputBus below).
// Additionally, there is a double-buffering for input and output which is exposed directly to JavaScript (see inputBuffer and outputBuffer below).
// This node is the producer for inputBuffer and the consumer for outputBuffer.
// The JavaScript code is the consumer of inputBuffer and the producer for outputBuffer.
// Get input and output busses.
AudioBus* inputBus = input(0).bus();
AudioBus* outputBus = output(0).bus();
// Get input and output buffers. We double-buffer both the input and output sides.
unsigned doubleBufferIndex = this->doubleBufferIndex();
bool isDoubleBufferIndexGood = doubleBufferIndex < 2 && doubleBufferIndex < m_inputBuffers.size() && doubleBufferIndex < m_outputBuffers.size();
ASSERT(isDoubleBufferIndexGood);
if (!isDoubleBufferIndexGood)
return;
AudioBuffer* inputBuffer = m_inputBuffers[doubleBufferIndex].get();
AudioBuffer* outputBuffer = m_outputBuffers[doubleBufferIndex].get();
// Check the consistency of input and output buffers.
unsigned numberOfInputChannels = m_internalInputBus->numberOfChannels();
bool buffersAreGood = outputBuffer && bufferSize() == outputBuffer->length() && m_bufferReadWriteIndex + framesToProcess <= bufferSize();
// If the number of input channels is zero, it's ok to have inputBuffer = 0.
if (m_internalInputBus->numberOfChannels())
buffersAreGood = buffersAreGood && inputBuffer && bufferSize() == inputBuffer->length();
ASSERT(buffersAreGood);
if (!buffersAreGood)
return;
// We assume that bufferSize() is evenly divisible by framesToProcess - should always be true, but we should still check.
bool isFramesToProcessGood = framesToProcess && bufferSize() >= framesToProcess && !(bufferSize() % framesToProcess);
ASSERT(isFramesToProcessGood);
if (!isFramesToProcessGood)
return;
unsigned numberOfOutputChannels = outputBus->numberOfChannels();
bool channelsAreGood = (numberOfInputChannels == m_numberOfInputChannels) && (numberOfOutputChannels == m_numberOfOutputChannels);
ASSERT(channelsAreGood);
if (!channelsAreGood)
return;
for (unsigned i = 0; i < numberOfInputChannels; ++i)
m_internalInputBus->setChannelMemory(i, inputBuffer->getChannelData(i)->data() + m_bufferReadWriteIndex, framesToProcess);
if (numberOfInputChannels)
m_internalInputBus->copyFrom(*inputBus);
// Copy from the output buffer to the output.
for (unsigned i = 0; i < numberOfOutputChannels; ++i)
memcpy(outputBus->channel(i)->mutableData(), outputBuffer->getChannelData(i)->data() + m_bufferReadWriteIndex, sizeof(float) * framesToProcess);
// Update the buffering index.
m_bufferReadWriteIndex = (m_bufferReadWriteIndex + framesToProcess) % bufferSize();
// m_bufferReadWriteIndex will wrap back around to 0 when the current input and output buffers are full.
// When this happens, fire an event and swap buffers.
if (!m_bufferReadWriteIndex) {
// Avoid building up requests on the main thread to fire process events when they're not being handled.
// This could be a problem if the main thread is very busy doing other things and is being held up handling previous requests.
// The audio thread can't block on this lock, so we call tryLock() instead.
MutexTryLocker tryLocker(m_processEventLock);
if (!tryLocker.locked()) {
// We're late in handling the previous request. The main thread must be very busy.
// The best we can do is clear out the buffer ourself here.
outputBuffer->zero();
} else if (context()->executionContext()) {
// Fire the event on the main thread with the appropriate buffer
// index.
context()->executionContext()->postTask(BLINK_FROM_HERE,
createCrossThreadTask(&ScriptProcessorHandler::fireProcessEvent, this, m_doubleBufferIndex));
}
swapBuffers();
}
}
void ScriptProcessorHandler::fireProcessEvent(unsigned doubleBufferIndex)
{
ASSERT(isMainThread());
ASSERT(doubleBufferIndex < 2);
if (doubleBufferIndex > 1)
return;
AudioBuffer* inputBuffer = m_inputBuffers[doubleBufferIndex].get();
AudioBuffer* outputBuffer = m_outputBuffers[doubleBufferIndex].get();
ASSERT(outputBuffer);
if (!outputBuffer)
return;
// Avoid firing the event if the document has already gone away.
if (node() && context() && context()->executionContext()) {
// This synchronizes with process().
MutexLocker processLocker(m_processEventLock);
// Calculate a playbackTime with the buffersize which needs to be processed each time onaudioprocess is called.
// The outputBuffer being passed to JS will be played after exhuasting previous outputBuffer by double-buffering.
double playbackTime = (context()->currentSampleFrame() + m_bufferSize) / static_cast<double>(context()->sampleRate());
// Call the JavaScript event handler which will do the audio processing.
node()->dispatchEvent(AudioProcessingEvent::create(inputBuffer, outputBuffer, playbackTime));
}
}
double ScriptProcessorHandler::tailTime() const
{
return std::numeric_limits<double>::infinity();
}
double ScriptProcessorHandler::latencyTime() const
{
return std::numeric_limits<double>::infinity();
}
void ScriptProcessorHandler::setChannelCount(unsigned long channelCount, ExceptionState& exceptionState)
{
ASSERT(isMainThread());
AbstractAudioContext::AutoLocker locker(context());
if (channelCount != m_channelCount) {
exceptionState.throwDOMException(
NotSupportedError,
"channelCount cannot be changed from " + String::number(m_channelCount) + " to " + String::number(channelCount));
}
}
void ScriptProcessorHandler::setChannelCountMode(const String& mode, ExceptionState& exceptionState)
{
ASSERT(isMainThread());
AbstractAudioContext::AutoLocker locker(context());
if ((mode == "max") || (mode == "clamped-max")) {
exceptionState.throwDOMException(
NotSupportedError,
"channelCountMode cannot be changed from 'explicit' to '" + mode + "'");
}
}
// ----------------------------------------------------------------
ScriptProcessorNode::ScriptProcessorNode(AbstractAudioContext& context, float sampleRate, size_t bufferSize, unsigned numberOfInputChannels, unsigned numberOfOutputChannels)
: AudioNode(context)
{
setHandler(ScriptProcessorHandler::create(*this, sampleRate, bufferSize, numberOfInputChannels, numberOfOutputChannels));
}
static size_t chooseBufferSize()
{
// Choose a buffer size based on the audio hardware buffer size. Arbitarily make it a power of
// two that is 4 times greater than the hardware buffer size.
// FIXME: What is the best way to choose this?
size_t hardwareBufferSize = Platform::current()->audioHardwareBufferSize();
size_t bufferSize = 1 << static_cast<unsigned>(log2(4 * hardwareBufferSize) + 0.5);
if (bufferSize < 256)
return 256;
if (bufferSize > 16384)
return 16384;
return bufferSize;
}
ScriptProcessorNode* ScriptProcessorNode::create(AbstractAudioContext& context, float sampleRate, size_t bufferSize, unsigned numberOfInputChannels, unsigned numberOfOutputChannels)
{
// Check for valid buffer size.
switch (bufferSize) {
case 0:
bufferSize = chooseBufferSize();
break;
case 256:
case 512:
case 1024:
case 2048:
case 4096:
case 8192:
case 16384:
break;
default:
return nullptr;
}
if (!numberOfInputChannels && !numberOfOutputChannels)
return nullptr;
if (numberOfInputChannels > AbstractAudioContext::maxNumberOfChannels())
return nullptr;
if (numberOfOutputChannels > AbstractAudioContext::maxNumberOfChannels())
return nullptr;
return new ScriptProcessorNode(context, sampleRate, bufferSize, numberOfInputChannels, numberOfOutputChannels);
}
size_t ScriptProcessorNode::bufferSize() const
{
return static_cast<ScriptProcessorHandler&>(handler()).bufferSize();
}
} // namespace blink
|