summaryrefslogtreecommitdiffstats
path: root/third_party/WebKit/Source/platform/audio/ReverbConvolver.cpp
blob: a9550dc9e972adb21020ee9f0318909ac279205f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*
 * Copyright (C) 2010 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
 *     its contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "platform/audio/ReverbConvolver.h"
#include "platform/Task.h"
#include "platform/audio/AudioBus.h"
#include "platform/audio/VectorMath.h"
#include "public/platform/Platform.h"
#include "public/platform/WebThread.h"
#include "public/platform/WebTraceLocation.h"

namespace blink {

using namespace VectorMath;

const int InputBufferSize = 8 * 16384;

// We only process the leading portion of the impulse response in the real-time thread.  We don't exceed this length.
// It turns out then, that the background thread has about 278msec of scheduling slop.
// Empirically, this has been found to be a good compromise between giving enough time for scheduling slop,
// while still minimizing the amount of processing done in the primary (high-priority) thread.
// This was found to be a good value on Mac OS X, and may work well on other platforms as well, assuming
// the very rough scheduling latencies are similar on these time-scales.  Of course, this code may need to be
// tuned for individual platforms if this assumption is found to be incorrect.
const size_t RealtimeFrameLimit = 8192  + 4096; // ~278msec @ 44.1KHz

const size_t MinFFTSize = 128;
const size_t MaxRealtimeFFTSize = 2048;

ReverbConvolver::ReverbConvolver(AudioChannel* impulseResponse, size_t renderSliceSize, size_t maxFFTSize, size_t convolverRenderPhase, bool useBackgroundThreads)
    : m_impulseResponseLength(impulseResponse->length())
    , m_accumulationBuffer(impulseResponse->length() + renderSliceSize)
    , m_inputBuffer(InputBufferSize)
    , m_minFFTSize(MinFFTSize) // First stage will have this size - successive stages will double in size each time
    , m_maxFFTSize(maxFFTSize) // until we hit m_maxFFTSize
{
    // If we are using background threads then don't exceed this FFT size for the
    // stages which run in the real-time thread.  This avoids having only one or two
    // large stages (size 16384 or so) at the end which take a lot of time every several
    // processing slices.  This way we amortize the cost over more processing slices.
    m_maxRealtimeFFTSize = MaxRealtimeFFTSize;

    const float* response = impulseResponse->data();
    size_t totalResponseLength = impulseResponse->length();

    // The total latency is zero because the direct-convolution is used in the leading portion.
    size_t reverbTotalLatency = 0;

    size_t stageOffset = 0;
    int i = 0;
    size_t fftSize = m_minFFTSize;
    while (stageOffset < totalResponseLength) {
        size_t stageSize = fftSize / 2;

        // For the last stage, it's possible that stageOffset is such that we're straddling the end
        // of the impulse response buffer (if we use stageSize), so reduce the last stage's length...
        if (stageSize + stageOffset > totalResponseLength)
            stageSize = totalResponseLength - stageOffset;

        // This "staggers" the time when each FFT happens so they don't all happen at the same time
        int renderPhase = convolverRenderPhase + i * renderSliceSize;

        bool useDirectConvolver = !stageOffset;

        OwnPtr<ReverbConvolverStage> stage = adoptPtr(new ReverbConvolverStage(response, totalResponseLength, reverbTotalLatency, stageOffset, stageSize, fftSize, renderPhase, renderSliceSize, &m_accumulationBuffer, useDirectConvolver));

        bool isBackgroundStage = false;

        if (useBackgroundThreads && stageOffset > RealtimeFrameLimit) {
            m_backgroundStages.append(stage.release());
            isBackgroundStage = true;
        } else
            m_stages.append(stage.release());

        stageOffset += stageSize;
        ++i;

        if (!useDirectConvolver) {
            // Figure out next FFT size
            fftSize *= 2;
        }

        if (useBackgroundThreads && !isBackgroundStage && fftSize > m_maxRealtimeFFTSize)
            fftSize = m_maxRealtimeFFTSize;
        if (fftSize > m_maxFFTSize)
            fftSize = m_maxFFTSize;
    }

    // Start up background thread
    // FIXME: would be better to up the thread priority here.  It doesn't need to be real-time, but higher than the default...
    if (useBackgroundThreads && m_backgroundStages.size() > 0)
        m_backgroundThread = adoptPtr(Platform::current()->createThread("Reverb convolution background thread"));
}

ReverbConvolver::~ReverbConvolver()
{
    // Wait for background thread to stop
    m_backgroundThread.clear();
}

void ReverbConvolver::processInBackground()
{
    // Process all of the stages until their read indices reach the input buffer's write index
    int writeIndex = m_inputBuffer.writeIndex();

    // Even though it doesn't seem like every stage needs to maintain its own version of readIndex
    // we do this in case we want to run in more than one background thread.
    int readIndex;

    while ((readIndex = m_backgroundStages[0]->inputReadIndex()) != writeIndex) { // FIXME: do better to detect buffer overrun...
        // The ReverbConvolverStages need to process in amounts which evenly divide half the FFT size
        const int SliceSize = MinFFTSize / 2;

        // Accumulate contributions from each stage
        for (size_t i = 0; i < m_backgroundStages.size(); ++i)
            m_backgroundStages[i]->processInBackground(this, SliceSize);
    }
}

void ReverbConvolver::process(const AudioChannel* sourceChannel, AudioChannel* destinationChannel, size_t framesToProcess)
{
    bool isSafe = sourceChannel && destinationChannel && sourceChannel->length() >= framesToProcess && destinationChannel->length() >= framesToProcess;
    ASSERT(isSafe);
    if (!isSafe)
        return;

    const float* source = sourceChannel->data();
    float* destination = destinationChannel->mutableData();
    bool isDataSafe = source && destination;
    ASSERT(isDataSafe);
    if (!isDataSafe)
        return;

    // Feed input buffer (read by all threads)
    m_inputBuffer.write(source, framesToProcess);

    // Accumulate contributions from each stage
    for (size_t i = 0; i < m_stages.size(); ++i)
        m_stages[i]->process(source, framesToProcess);

    // Finally read from accumulation buffer
    m_accumulationBuffer.readAndClear(destination, framesToProcess);

    // Now that we've buffered more input, post another task to the background thread.
    if (m_backgroundThread)
        m_backgroundThread->taskRunner()->postTask(BLINK_FROM_HERE, new Task(WTF::bind(&ReverbConvolver::processInBackground, this)));
}

void ReverbConvolver::reset()
{
    for (size_t i = 0; i < m_stages.size(); ++i)
        m_stages[i]->reset();

    for (size_t i = 0; i < m_backgroundStages.size(); ++i)
        m_backgroundStages[i]->reset();

    m_accumulationBuffer.reset();
    m_inputBuffer.reset();
}

size_t ReverbConvolver::latencyFrames() const
{
    return 0;
}

} // namespace blink