summaryrefslogtreecommitdiffstats
path: root/third_party/WebKit/Source/wtf/LinkedHashSet.h
blob: 63e3060cba0994327ce8d08bb29fc7e885f8ed53 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
/*
 * Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights reserved.
 * Copyright (C) 2011, Benjamin Poulain <ikipou@gmail.com>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public License
 * along with this library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 */

#ifndef WTF_LinkedHashSet_h
#define WTF_LinkedHashSet_h

#include "wtf/AddressSanitizer.h"
#include "wtf/HashSet.h"
#include "wtf/OwnPtr.h"
#include "wtf/PartitionAllocator.h"
#include "wtf/PassOwnPtr.h"

namespace WTF {

// LinkedHashSet: Just like HashSet, this class provides a Set
// interface - a collection of unique objects with O(1) insertion,
// removal and test for containership. However, it also has an
// order - iterating it will always give back values in the order
// in which they are added.

// Unlike ListHashSet, but like most WTF collections, iteration is NOT safe
// against mutation of the LinkedHashSet.

template<typename Value, typename HashFunctions, typename HashTraits, typename Allocator> class LinkedHashSet;

template<typename LinkedHashSet> class LinkedHashSetIterator;
template<typename LinkedHashSet> class LinkedHashSetConstIterator;
template<typename LinkedHashSet> class LinkedHashSetReverseIterator;
template<typename LinkedHashSet> class LinkedHashSetConstReverseIterator;

template<typename Value, typename HashFunctions, typename Allocator> struct LinkedHashSetTranslator;
template<typename Value, typename Allocator> struct LinkedHashSetExtractor;
template<typename Value, typename ValueTraits, typename Allocator> struct LinkedHashSetTraits;

class LinkedHashSetNodeBase {
    DISALLOW_NEW();
public:
    LinkedHashSetNodeBase() : m_prev(this), m_next(this) { }

    NO_LAZY_SWEEP_SANITIZE_ADDRESS
    void unlink()
    {
        if (!m_next)
            return;
        ASSERT(m_prev);
        ASSERT(m_next->m_prev == this);
        ASSERT(m_prev->m_next == this);
        m_next->m_prev = m_prev;
        m_prev->m_next = m_next;
    }

    ~LinkedHashSetNodeBase()
    {
        unlink();
    }

    void insertBefore(LinkedHashSetNodeBase& other)
    {
        other.m_next = this;
        other.m_prev = m_prev;
        m_prev->m_next = &other;
        m_prev = &other;
        ASSERT(other.m_next);
        ASSERT(other.m_prev);
        ASSERT(m_next);
        ASSERT(m_prev);
    }

    void insertAfter(LinkedHashSetNodeBase& other)
    {
        other.m_prev = this;
        other.m_next = m_next;
        m_next->m_prev = &other;
        m_next = &other;
        ASSERT(other.m_next);
        ASSERT(other.m_prev);
        ASSERT(m_next);
        ASSERT(m_prev);
    }

    LinkedHashSetNodeBase(LinkedHashSetNodeBase* prev, LinkedHashSetNodeBase* next)
        : m_prev(prev)
        , m_next(next)
    {
        ASSERT((prev && next) || (!prev && !next));
    }

    LinkedHashSetNodeBase* m_prev;
    LinkedHashSetNodeBase* m_next;

protected:
    // If we take a copy of a node we can't copy the next and prev pointers,
    // since they point to something that does not point at us. This is used
    // inside the shouldExpand() "if" in HashTable::add.
    LinkedHashSetNodeBase(const LinkedHashSetNodeBase& other)
        : m_prev(0)
        , m_next(0) { }

    LinkedHashSetNodeBase(LinkedHashSetNodeBase&& other)
        : m_prev(other.m_prev)
        , m_next(other.m_next)
    {
        other.m_prev = nullptr;
        other.m_next = nullptr;
        if (m_next) {
            m_prev->m_next = this;
            m_next->m_prev = this;
        }
    }

private:
    // Should not be used.
    LinkedHashSetNodeBase& operator=(const LinkedHashSetNodeBase& other);
};

template<typename ValueArg, typename Allocator>
class LinkedHashSetNode : public LinkedHashSetNodeBase {
    DISALLOW_NEW_EXCEPT_PLACEMENT_NEW();
public:
    LinkedHashSetNode(const ValueArg& value, LinkedHashSetNodeBase* prev, LinkedHashSetNodeBase* next)
        : LinkedHashSetNodeBase(prev, next)
        , m_value(value)
    {
    }

    LinkedHashSetNode(LinkedHashSetNode&& other)
        : LinkedHashSetNodeBase(std::move(other))
        , m_value(std::move(other.m_value))
    {
    }

    ValueArg m_value;

private:
    WTF_MAKE_NONCOPYABLE(LinkedHashSetNode);
};

template<
    typename ValueArg,
    typename HashFunctions = typename DefaultHash<ValueArg>::Hash,
    typename TraitsArg = HashTraits<ValueArg>,
    typename Allocator = PartitionAllocator>
class LinkedHashSet {
    WTF_USE_ALLOCATOR(LinkedHashSet, Allocator);
private:
    typedef ValueArg Value;
    typedef TraitsArg Traits;
    typedef LinkedHashSetNode<Value, Allocator> Node;
    typedef LinkedHashSetNodeBase NodeBase;
    typedef LinkedHashSetTranslator<Value, HashFunctions, Allocator> NodeHashFunctions;
    typedef LinkedHashSetTraits<Value, Traits, Allocator> NodeHashTraits;

    typedef HashTable<Node, Node, IdentityExtractor,
        NodeHashFunctions, NodeHashTraits, NodeHashTraits, Allocator> ImplType;

public:
    typedef LinkedHashSetIterator<LinkedHashSet> iterator;
    friend class LinkedHashSetIterator<LinkedHashSet>;
    typedef LinkedHashSetConstIterator<LinkedHashSet> const_iterator;
    friend class LinkedHashSetConstIterator<LinkedHashSet>;

    typedef LinkedHashSetReverseIterator<LinkedHashSet> reverse_iterator;
    friend class LinkedHashSetReverseIterator<LinkedHashSet>;
    typedef LinkedHashSetConstReverseIterator<LinkedHashSet> const_reverse_iterator;
    friend class LinkedHashSetConstReverseIterator<LinkedHashSet>;

    struct AddResult final {
        STACK_ALLOCATED();
        AddResult(const typename ImplType::AddResult& hashTableAddResult)
            : storedValue(&hashTableAddResult.storedValue->m_value)
            , isNewEntry(hashTableAddResult.isNewEntry)
        {
        }

        Value* storedValue;
        bool isNewEntry;
    };

    typedef typename HashTraits<Value>::PeekInType ValuePeekInType;

    LinkedHashSet();
    LinkedHashSet(const LinkedHashSet&);
    LinkedHashSet(LinkedHashSet&&);
    LinkedHashSet& operator=(const LinkedHashSet&);
    LinkedHashSet& operator=(LinkedHashSet&&);

    // Needs finalization. The anchor needs to unlink itself from the chain.
    ~LinkedHashSet();

    static void finalize(void* pointer) { reinterpret_cast<LinkedHashSet*>(pointer)->~LinkedHashSet(); }
    void finalizeGarbageCollectedObject() { finalize(this); }

    void swap(LinkedHashSet&);

    unsigned size() const { return m_impl.size(); }
    unsigned capacity() const { return m_impl.capacity(); }
    bool isEmpty() const { return m_impl.isEmpty(); }

    iterator begin() { return makeIterator(firstNode()); }
    iterator end() { return makeIterator(anchor()); }
    const_iterator begin() const { return makeConstIterator(firstNode()); }
    const_iterator end() const { return makeConstIterator(anchor()); }

    reverse_iterator rbegin() { return makeReverseIterator(lastNode()); }
    reverse_iterator rend() { return makeReverseIterator(anchor()); }
    const_reverse_iterator rbegin() const { return makeConstReverseIterator(lastNode()); }
    const_reverse_iterator rend() const { return makeConstReverseIterator(anchor()); }

    Value& first();
    const Value& first() const;
    void removeFirst();

    Value& last();
    const Value& last() const;
    void removeLast();

    iterator find(ValuePeekInType);
    const_iterator find(ValuePeekInType) const;
    bool contains(ValuePeekInType) const;

    // An alternate version of find() that finds the object by hashing and comparing
    // with some other type, to avoid the cost of type conversion.
    // The HashTranslator interface is defined in HashSet.
    template<typename HashTranslator, typename T> iterator find(const T&);
    template<typename HashTranslator, typename T> const_iterator find(const T&) const;
    template<typename HashTranslator, typename T> bool contains(const T&) const;

    // The return value of add is a pair of a pointer to the stored value,
    // and a bool that is true if an new entry was added.
    template <typename IncomingValueType>
    AddResult add(IncomingValueType&&);

    // Same as add() except that the return value is an
    // iterator. Useful in cases where it's needed to have the
    // same return value as find() and where it's not possible to
    // use a pointer to the storedValue.
    template <typename IncomingValueType>
    iterator addReturnIterator(IncomingValueType&&);

    // Add the value to the end of the collection. If the value was already in
    // the list, it is moved to the end.
    template <typename IncomingValueType>
    AddResult appendOrMoveToLast(IncomingValueType&&);

    // Add the value to the beginning of the collection. If the value was already in
    // the list, it is moved to the beginning.
    template <typename IncomingValueType>
    AddResult prependOrMoveToFirst(IncomingValueType&&);

    template <typename IncomingValueType>
    AddResult insertBefore(ValuePeekInType beforeValue, IncomingValueType&& newValue);
    template <typename IncomingValueType>
    AddResult insertBefore(iterator it, IncomingValueType&& newValue) { return m_impl.template add<NodeHashFunctions>(std::forward<IncomingValueType>(newValue), it.node()); }

    void remove(ValuePeekInType);
    void remove(iterator);
    void clear() { m_impl.clear(); }
    template<typename Collection>
    void removeAll(const Collection& other) { WTF::removeAll(*this, other); }

    template<typename VisitorDispatcher>
    void trace(VisitorDispatcher visitor) { m_impl.trace(visitor); }

    int64_t modifications() const { return m_impl.modifications(); }
    void checkModifications(int64_t mods) const { m_impl.checkModifications(mods); }

private:
    Node* anchor() { return reinterpret_cast<Node*>(&m_anchor); }
    const Node* anchor() const { return reinterpret_cast<const Node*>(&m_anchor); }
    Node* firstNode() { return reinterpret_cast<Node*>(m_anchor.m_next); }
    const Node* firstNode() const { return reinterpret_cast<const Node*>(m_anchor.m_next); }
    Node* lastNode() { return reinterpret_cast<Node*>(m_anchor.m_prev); }
    const Node* lastNode() const { return reinterpret_cast<const Node*>(m_anchor.m_prev); }

    iterator makeIterator(const Node* position) { return iterator(position, this); }
    const_iterator makeConstIterator(const Node* position) const { return const_iterator(position, this); }
    reverse_iterator makeReverseIterator(const Node* position) { return reverse_iterator(position, this); }
    const_reverse_iterator makeConstReverseIterator(const Node* position) const { return const_reverse_iterator(position, this); }

    ImplType m_impl;
    NodeBase m_anchor;
};

template<typename Value, typename HashFunctions, typename Allocator>
struct LinkedHashSetTranslator {
    STATIC_ONLY(LinkedHashSetTranslator);
    typedef LinkedHashSetNode<Value, Allocator> Node;
    typedef LinkedHashSetNodeBase NodeBase;
    typedef typename HashTraits<Value>::PeekInType ValuePeekInType;
    static unsigned hash(const Node& node) { return HashFunctions::hash(node.m_value); }
    static unsigned hash(const ValuePeekInType& key) { return HashFunctions::hash(key); }
    static bool equal(const Node& a, const ValuePeekInType& b) { return HashFunctions::equal(a.m_value, b); }
    static bool equal(const Node& a, const Node& b) { return HashFunctions::equal(a.m_value, b.m_value); }
    template <typename IncomingValueType>
    static void translate(Node& location, IncomingValueType&& key, NodeBase* anchor)
    {
        anchor->insertBefore(location);
        location.m_value = std::forward<IncomingValueType>(key);
    }

    // Empty (or deleted) slots have the m_next pointer set to null, but we
    // don't do anything to the other fields, which may contain junk.
    // Therefore you can't compare a newly constructed empty value with a
    // slot and get the right answer.
    static const bool safeToCompareToEmptyOrDeleted = false;
};

template<typename Value, typename Allocator>
struct LinkedHashSetExtractor {
    STATIC_ONLY(LinkedHashSetExtractor);
    static const Value& extract(const LinkedHashSetNode<Value, Allocator>& node) { return node.m_value; }
};

template<typename Value, typename ValueTraitsArg, typename Allocator>
struct LinkedHashSetTraits : public SimpleClassHashTraits<LinkedHashSetNode<Value, Allocator>> {
    STATIC_ONLY(LinkedHashSetTraits);
    typedef LinkedHashSetNode<Value, Allocator> Node;
    typedef ValueTraitsArg ValueTraits;

    // The slot is empty when the m_next field is zero so it's safe to zero
    // the backing.
    static const bool emptyValueIsZero = true;

    static const bool hasIsEmptyValueFunction = true;
    static bool isEmptyValue(const Node& node) { return !node.m_next; }

    static const int deletedValue = -1;

    static void constructDeletedValue(Node& slot, bool) { slot.m_next = reinterpret_cast<Node*>(deletedValue); }
    static bool isDeletedValue(const Node& slot) { return slot.m_next == reinterpret_cast<Node*>(deletedValue); }

    // Whether we need to trace and do weak processing depends on the traits of
    // the type inside the node.
    template<typename U = void>
    struct NeedsTracingLazily {
        STATIC_ONLY(NeedsTracingLazily);
        static const bool value = ValueTraits::template NeedsTracingLazily<>::value;
    };
    static const WeakHandlingFlag weakHandlingFlag = ValueTraits::weakHandlingFlag;
};

template<typename LinkedHashSetType>
class LinkedHashSetIterator {
    DISALLOW_NEW();
private:
    typedef typename LinkedHashSetType::Node Node;
    typedef typename LinkedHashSetType::Traits Traits;

    typedef typename LinkedHashSetType::Value& ReferenceType;
    typedef typename LinkedHashSetType::Value* PointerType;

    typedef LinkedHashSetConstIterator<LinkedHashSetType> const_iterator;

    Node* node() { return const_cast<Node*>(m_iterator.node()); }

protected:
    LinkedHashSetIterator(const Node* position, LinkedHashSetType* m_container)
        : m_iterator(position , m_container)
    {
    }

public:
    // Default copy, assignment and destructor are OK.

    PointerType get() const { return const_cast<PointerType>(m_iterator.get()); }
    ReferenceType operator*() const { return *get(); }
    PointerType operator->() const { return get(); }

    LinkedHashSetIterator& operator++() { ++m_iterator; return *this; }
    LinkedHashSetIterator& operator--() { --m_iterator; return *this; }

    // Postfix ++ and -- intentionally omitted.

    // Comparison.
    bool operator==(const LinkedHashSetIterator& other) const { return m_iterator == other.m_iterator; }
    bool operator!=(const LinkedHashSetIterator& other) const { return m_iterator != other.m_iterator; }

    operator const_iterator() const { return m_iterator; }

protected:
    const_iterator m_iterator;
    template<typename T, typename U, typename V, typename W> friend class LinkedHashSet;
};

template<typename LinkedHashSetType>
class LinkedHashSetConstIterator {
    DISALLOW_NEW();
private:
    typedef typename LinkedHashSetType::Node Node;
    typedef typename LinkedHashSetType::Traits Traits;

    typedef const typename LinkedHashSetType::Value& ReferenceType;
    typedef const typename LinkedHashSetType::Value* PointerType;

    const Node* node() const { return static_cast<const Node*>(m_position); }

protected:
    LinkedHashSetConstIterator(const LinkedHashSetNodeBase* position, const LinkedHashSetType* container)
        : m_position(position)
#if ENABLE(ASSERT)
        , m_container(container)
        , m_containerModifications(container->modifications())
#endif
    {
    }

public:
    PointerType get() const
    {
        checkModifications();
        return &static_cast<const Node*>(m_position)->m_value;
    }
    ReferenceType operator*() const { return *get(); }
    PointerType operator->() const { return get(); }

    LinkedHashSetConstIterator& operator++()
    {
        ASSERT(m_position);
        checkModifications();
        m_position = m_position->m_next;
        return *this;
    }

    LinkedHashSetConstIterator& operator--()
    {
        ASSERT(m_position);
        checkModifications();
        m_position = m_position->m_prev;
        return *this;
    }

    // Postfix ++ and -- intentionally omitted.

    // Comparison.
    bool operator==(const LinkedHashSetConstIterator& other) const
    {
        return m_position == other.m_position;
    }
    bool operator!=(const LinkedHashSetConstIterator& other) const
    {
        return m_position != other.m_position;
    }

private:
    const LinkedHashSetNodeBase* m_position;
#if ENABLE(ASSERT)
    void checkModifications() const { m_container->checkModifications(m_containerModifications); }
    const LinkedHashSetType* m_container;
    int64_t m_containerModifications;
#else
    void checkModifications() const { }
#endif
    template<typename T, typename U, typename V, typename W> friend class LinkedHashSet;
    friend class LinkedHashSetIterator<LinkedHashSetType>;
};

template<typename LinkedHashSetType>
class LinkedHashSetReverseIterator : public LinkedHashSetIterator<LinkedHashSetType> {
    typedef LinkedHashSetIterator<LinkedHashSetType> Superclass;
    typedef LinkedHashSetConstReverseIterator<LinkedHashSetType> const_reverse_iterator;
    typedef typename LinkedHashSetType::Node Node;

protected:
    LinkedHashSetReverseIterator(const Node* position, LinkedHashSetType* container)
        : Superclass(position, container) { }

public:
    LinkedHashSetReverseIterator& operator++() { Superclass::operator--(); return *this; }
    LinkedHashSetReverseIterator& operator--() { Superclass::operator++(); return *this; }

    // Postfix ++ and -- intentionally omitted.

    operator const_reverse_iterator() const { return *reinterpret_cast<const_reverse_iterator*>(this); }

    template<typename T, typename U, typename V, typename W> friend class LinkedHashSet;
};

template<typename LinkedHashSetType>
class LinkedHashSetConstReverseIterator : public LinkedHashSetConstIterator<LinkedHashSetType> {
    typedef LinkedHashSetConstIterator<LinkedHashSetType> Superclass;
    typedef typename LinkedHashSetType::Node Node;

public:
    LinkedHashSetConstReverseIterator(const Node* position, const LinkedHashSetType* container)
        : Superclass(position, container) { }

    LinkedHashSetConstReverseIterator& operator++() { Superclass::operator--(); return *this; }
    LinkedHashSetConstReverseIterator& operator--() { Superclass::operator++(); return *this; }

    // Postfix ++ and -- intentionally omitted.

    template<typename T, typename U, typename V, typename W> friend class LinkedHashSet;
};

template<typename T, typename U, typename V, typename W>
inline LinkedHashSet<T, U, V, W>::LinkedHashSet() { }

template<typename T, typename U, typename V, typename W>
inline LinkedHashSet<T, U, V, W>::LinkedHashSet(const LinkedHashSet& other)
    : m_anchor()
{
    const_iterator end = other.end();
    for (const_iterator it = other.begin(); it != end; ++it)
        add(*it);
}

template<typename T, typename U, typename V, typename W>
inline LinkedHashSet<T, U, V, W>::LinkedHashSet(LinkedHashSet&& other)
    : m_anchor()
{
    swap(other);
}

template<typename T, typename U, typename V, typename W>
inline LinkedHashSet<T, U, V, W>& LinkedHashSet<T, U, V, W>::operator=(const LinkedHashSet& other)
{
    LinkedHashSet tmp(other);
    swap(tmp);
    return *this;
}

template<typename T, typename U, typename V, typename W>
inline LinkedHashSet<T, U, V, W>& LinkedHashSet<T, U, V, W>::operator=(LinkedHashSet&& other)
{
    swap(other);
    return *this;
}

template<typename T, typename U, typename V, typename W>
inline void LinkedHashSet<T, U, V, W>::swap(LinkedHashSet& other)
{
    m_impl.swap(other.m_impl);
    swapAnchor(m_anchor, other.m_anchor);
}

template<typename T, typename U, typename V, typename Allocator>
inline LinkedHashSet<T, U, V, Allocator>::~LinkedHashSet()
{
    // The destructor of m_anchor will implicitly be called here, which will
    // unlink the anchor from the collection.
}

template<typename T, typename U, typename V, typename W>
inline T& LinkedHashSet<T, U, V, W>::first()
{
    ASSERT(!isEmpty());
    return firstNode()->m_value;
}

template<typename T, typename U, typename V, typename W>
inline const T& LinkedHashSet<T, U, V, W>::first() const
{
    ASSERT(!isEmpty());
    return firstNode()->m_value;
}

template<typename T, typename U, typename V, typename W>
inline void LinkedHashSet<T, U, V, W>::removeFirst()
{
    ASSERT(!isEmpty());
    m_impl.remove(static_cast<Node*>(m_anchor.m_next));
}

template<typename T, typename U, typename V, typename W>
inline T& LinkedHashSet<T, U, V, W>::last()
{
    ASSERT(!isEmpty());
    return lastNode()->m_value;
}

template<typename T, typename U, typename V, typename W>
inline const T& LinkedHashSet<T, U, V, W>::last() const
{
    ASSERT(!isEmpty());
    return lastNode()->m_value;
}

template<typename T, typename U, typename V, typename W>
inline void LinkedHashSet<T, U, V, W>::removeLast()
{
    ASSERT(!isEmpty());
    m_impl.remove(static_cast<Node*>(m_anchor.m_prev));
}

template<typename T, typename U, typename V, typename W>
inline typename LinkedHashSet<T, U, V, W>::iterator LinkedHashSet<T, U, V, W>::find(ValuePeekInType value)
{
    LinkedHashSet::Node* node = m_impl.template lookup<LinkedHashSet::NodeHashFunctions, ValuePeekInType>(value);
    if (!node)
        return end();
    return makeIterator(node);
}

template<typename T, typename U, typename V, typename W>
inline typename LinkedHashSet<T, U, V, W>::const_iterator LinkedHashSet<T, U, V, W>::find(ValuePeekInType value) const
{
    const LinkedHashSet::Node* node = m_impl.template lookup<LinkedHashSet::NodeHashFunctions, ValuePeekInType>(value);
    if (!node)
        return end();
    return makeConstIterator(node);
}

template<typename Translator>
struct LinkedHashSetTranslatorAdapter {
    STATIC_ONLY(LinkedHashSetTranslatorAdapter);
    template<typename T> static unsigned hash(const T& key) { return Translator::hash(key); }
    template<typename T, typename U> static bool equal(const T& a, const U& b) { return Translator::equal(a.m_value, b); }
};

template<typename Value, typename U, typename V, typename W>
template<typename HashTranslator, typename T>
inline typename LinkedHashSet<Value, U, V, W>::iterator LinkedHashSet<Value, U, V, W>::find(const T& value)
{
    typedef LinkedHashSetTranslatorAdapter<HashTranslator> TranslatedFunctions;
    const LinkedHashSet::Node* node = m_impl.template lookup<TranslatedFunctions, const T&>(value);
    if (!node)
        return end();
    return makeIterator(node);
}

template<typename Value, typename U, typename V, typename W>
template<typename HashTranslator, typename T>
inline typename LinkedHashSet<Value, U, V, W>::const_iterator LinkedHashSet<Value, U, V, W>::find(const T& value) const
{
    typedef LinkedHashSetTranslatorAdapter<HashTranslator> TranslatedFunctions;
    const LinkedHashSet::Node* node = m_impl.template lookup<TranslatedFunctions, const T&>(value);
    if (!node)
        return end();
    return makeConstIterator(node);
}

template<typename Value, typename U, typename V, typename W>
template<typename HashTranslator, typename T>
inline bool LinkedHashSet<Value, U, V, W>::contains(const T& value) const
{
    return m_impl.template contains<LinkedHashSetTranslatorAdapter<HashTranslator>>(value);
}

template<typename T, typename U, typename V, typename W>
inline bool LinkedHashSet<T, U, V, W>::contains(ValuePeekInType value) const
{
    return m_impl.template contains<NodeHashFunctions>(value);
}

template<typename Value, typename HashFunctions, typename Traits, typename Allocator>
template<typename IncomingValueType>
typename LinkedHashSet<Value, HashFunctions, Traits, Allocator>::AddResult LinkedHashSet<Value, HashFunctions, Traits, Allocator>::add(IncomingValueType&& value)
{
    return m_impl.template add<NodeHashFunctions>(std::forward<IncomingValueType>(value), &m_anchor);
}

template<typename T, typename U, typename V, typename W>
template<typename IncomingValueType>
typename LinkedHashSet<T, U, V, W>::iterator LinkedHashSet<T, U, V, W>::addReturnIterator(IncomingValueType&& value)
{
    typename ImplType::AddResult result = m_impl.template add<NodeHashFunctions>(std::forward<IncomingValueType>(value), &m_anchor);
    return makeIterator(result.storedValue);
}

template<typename T, typename U, typename V, typename W>
template<typename IncomingValueType>
typename LinkedHashSet<T, U, V, W>::AddResult LinkedHashSet<T, U, V, W>::appendOrMoveToLast(IncomingValueType&& value)
{
    typename ImplType::AddResult result = m_impl.template add<NodeHashFunctions>(std::forward<IncomingValueType>(value), &m_anchor);
    Node* node = result.storedValue;
    if (!result.isNewEntry) {
        node->unlink();
        m_anchor.insertBefore(*node);
    }
    return result;
}

template<typename T, typename U, typename V, typename W>
template<typename IncomingValueType>
typename LinkedHashSet<T, U, V, W>::AddResult LinkedHashSet<T, U, V, W>::prependOrMoveToFirst(IncomingValueType&& value)
{
    typename ImplType::AddResult result = m_impl.template add<NodeHashFunctions>(std::forward<IncomingValueType>(value), m_anchor.m_next);
    Node* node = result.storedValue;
    if (!result.isNewEntry) {
        node->unlink();
        m_anchor.insertAfter(*node);
    }
    return result;
}

template<typename T, typename U, typename V, typename W>
template<typename IncomingValueType>
typename LinkedHashSet<T, U, V, W>::AddResult LinkedHashSet<T, U, V, W>::insertBefore(ValuePeekInType beforeValue, IncomingValueType&& newValue)
{
    return insertBefore(find(beforeValue), std::forward<IncomingValueType>(newValue));
}

template<typename T, typename U, typename V, typename W>
inline void LinkedHashSet<T, U, V, W>::remove(iterator it)
{
    if (it == end())
        return;
    m_impl.remove(it.node());
}

template<typename T, typename U, typename V, typename W>
inline void LinkedHashSet<T, U, V, W>::remove(ValuePeekInType value)
{
    remove(find(value));
}

inline void swapAnchor(LinkedHashSetNodeBase& a, LinkedHashSetNodeBase& b)
{
    ASSERT(a.m_prev && a.m_next && b.m_prev && b.m_next);
    swap(a.m_prev, b.m_prev);
    swap(a.m_next, b.m_next);
    if (b.m_next == &a) {
        ASSERT(b.m_prev == &a);
        b.m_next = &b;
        b.m_prev = &b;
    } else {
        b.m_next->m_prev = &b;
        b.m_prev->m_next = &b;
    }
    if (a.m_next == &b) {
        ASSERT(a.m_prev == &b);
        a.m_next = &a;
        a.m_prev = &a;
    } else {
        a.m_next->m_prev = &a;
        a.m_prev->m_next = &a;
    }
}

inline void swap(LinkedHashSetNodeBase& a, LinkedHashSetNodeBase& b)
{
    ASSERT(a.m_next != &a && b.m_next != &b);
    swap(a.m_prev, b.m_prev);
    swap(a.m_next, b.m_next);
    if (b.m_next) {
        b.m_next->m_prev = &b;
        b.m_prev->m_next = &b;
    }
    if (a.m_next) {
        a.m_next->m_prev = &a;
        a.m_prev->m_next = &a;
    }
}

template<typename T, typename Allocator>
inline void swap(LinkedHashSetNode<T, Allocator>& a, LinkedHashSetNode<T, Allocator>& b)
{
    typedef LinkedHashSetNodeBase Base;
    // The key and value cannot be swapped atomically, and it would be
    // wrong to have a GC when only one was swapped and the other still
    // contained garbage (eg. from a previous use of the same slot).
    // Therefore we forbid a GC until both the key and the value are
    // swapped.
    Allocator::enterGCForbiddenScope();
    swap(static_cast<Base&>(a), static_cast<Base&>(b));
    swap(a.m_value, b.m_value);
    Allocator::leaveGCForbiddenScope();
}

#if !ENABLE(OILPAN)
template<typename T, typename U, typename V>
struct NeedsTracing<LinkedHashSet<T, U, V>> {
    STATIC_ONLY(NeedsTracing);
    static const bool value = false;
};
#endif

} // namespace WTF

using WTF::LinkedHashSet;

#endif /* WTF_LinkedHashSet_h */