summaryrefslogtreecommitdiffstats
path: root/third_party/WebKit/Source/wtf/MathExtras.h
blob: 2367947f22e0a2827a78e9b499f4e2cfa2180b51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*
 * Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef WTF_MathExtras_h
#define WTF_MathExtras_h

#include "wtf/Allocator.h"
#include "wtf/Assertions.h"
#include "wtf/CPU.h"
#include <cmath>
#include <cstddef>
#include <limits>

#if COMPILER(MSVC)
// Make math.h behave like other platforms.
#define _USE_MATH_DEFINES
// Even if math.h was already inlcuded, including math.h again with
// _USE_MATH_DEFINES adds the extra defines.
#include <math.h>
#include <stdint.h>
#endif

#if OS(OPENBSD)
#include <machine/ieee.h>
#include <sys/types.h>
#endif

const double piDouble = M_PI;
const float piFloat = static_cast<float>(M_PI);

const double piOverTwoDouble = M_PI_2;
const float piOverTwoFloat = static_cast<float>(M_PI_2);

const double piOverFourDouble = M_PI_4;
const float piOverFourFloat = static_cast<float>(M_PI_4);

const double twoPiDouble = piDouble * 2.0;
const float twoPiFloat = piFloat * 2.0f;

#if OS(ANDROID) || COMPILER(MSVC)
// ANDROID and MSVC's math.h does not currently supply log2 or log2f.
inline double log2(double num)
{
    // This constant is roughly M_LN2, which is not provided by default on Windows and Android.
    return log(num) / 0.693147180559945309417232121458176568;
}

inline float log2f(float num)
{
    // This constant is roughly M_LN2, which is not provided by default on Windows and Android.
    return logf(num) / 0.693147180559945309417232121458176568f;
}
#endif

#if COMPILER(MSVC)

// VS2013 has most of the math functions now, but we still need to work
// around various differences in behavior of Inf.

// Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values.
inline double wtf_atan2(double x, double y)
{
    double posInf = std::numeric_limits<double>::infinity();
    double negInf = -std::numeric_limits<double>::infinity();
    double nan = std::numeric_limits<double>::quiet_NaN();

    double result = nan;

    if (x == posInf && y == posInf)
        result = piOverFourDouble;
    else if (x == posInf && y == negInf)
        result = 3 * piOverFourDouble;
    else if (x == negInf && y == posInf)
        result = -piOverFourDouble;
    else if (x == negInf && y == negInf)
        result = -3 * piOverFourDouble;
    else
        result = ::atan2(x, y);

    return result;
}

// Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN instead of x.
inline double wtf_fmod(double x, double y) { return (!std::isinf(x) && std::isinf(y)) ? x : fmod(x, y); }

// Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead of 1.
inline double wtf_pow(double x, double y) { return y == 0 ? 1 : pow(x, y); }

#define atan2(x, y) wtf_atan2(x, y)
#define fmod(x, y) wtf_fmod(x, y)
#define pow(x, y) wtf_pow(x, y)

#endif // COMPILER(MSVC)

inline double deg2rad(double d)  { return d * piDouble / 180.0; }
inline double rad2deg(double r)  { return r * 180.0 / piDouble; }
inline double deg2grad(double d) { return d * 400.0 / 360.0; }
inline double grad2deg(double g) { return g * 360.0 / 400.0; }
inline double turn2deg(double t) { return t * 360.0; }
inline double deg2turn(double d) { return d / 360.0; }
inline double rad2grad(double r) { return r * 200.0 / piDouble; }
inline double grad2rad(double g) { return g * piDouble / 200.0; }
inline double turn2grad(double t) { return t * 400; }
inline double grad2turn(double g) { return g / 400; }

inline float deg2rad(float d)  { return d * piFloat / 180.0f; }
inline float rad2deg(float r)  { return r * 180.0f / piFloat; }
inline float deg2grad(float d) { return d * 400.0f / 360.0f; }
inline float grad2deg(float g) { return g * 360.0f / 400.0f; }
inline float turn2deg(float t) { return t * 360.0f; }
inline float deg2turn(float d) { return d / 360.0f; }
inline float rad2grad(float r) { return r * 200.0f / piFloat; }
inline float grad2rad(float g) { return g * piFloat / 200.0f; }
inline float turn2grad(float t) { return t * 400; }
inline float grad2turn(float g) { return g / 400; }

// clampTo() is implemented by templated helper classes (to allow for partial
// template specialization) as well as several helper functions.

// This helper function can be called when we know that:
// (1) The type signednesses match so the compiler will not produce signed vs.
//     unsigned warnings
// (2) The default type promotions/conversions are sufficient to handle things
//     correctly
template<typename LimitType, typename ValueType> inline LimitType clampToDirectComparison(ValueType value, LimitType min, LimitType max)
{
    if (value >= max)
        return max;
    return (value <= min) ? min : static_cast<LimitType>(value);
}

// For any floating-point limits, or integral limits smaller than long long, we
// can cast the limits to double without losing precision; then the only cases
// where |value| can't be represented accurately as a double are the ones where
// it's outside the limit range anyway.  So doing all comparisons as doubles
// will give correct results.
//
// In some cases, we can get better performance by using
// clampToDirectComparison().  We use a templated class to switch between these
// two cases (instead of simply using a conditional within one function) in
// order to only compile the clampToDirectComparison() code for cases where it
// will actually be used; this prevents the compiler from emitting warnings
// about unsafe code (even though we wouldn't actually be executing that code).
template<bool canUseDirectComparison, typename LimitType, typename ValueType> class ClampToNonLongLongHelper;
template<typename LimitType, typename ValueType> class ClampToNonLongLongHelper<true, LimitType, ValueType> {
    STATIC_ONLY(ClampToNonLongLongHelper);
public:
    static inline LimitType clampTo(ValueType value, LimitType min, LimitType max)
    {
        return clampToDirectComparison(value, min, max);
    }
};

template<typename LimitType, typename ValueType> class ClampToNonLongLongHelper<false, LimitType, ValueType> {
    STATIC_ONLY(ClampToNonLongLongHelper);
public:
    static inline LimitType clampTo(ValueType value, LimitType min, LimitType max)
    {
        const double doubleValue = static_cast<double>(value);
        if (doubleValue >= static_cast<double>(max))
            return max;
        if (doubleValue <= static_cast<double>(min))
            return min;
        // If the limit type is integer, we might get better performance by
        // casting |value| (as opposed to |doubleValue|) to the limit type.
        return std::numeric_limits<LimitType>::is_integer ? static_cast<LimitType>(value) : static_cast<LimitType>(doubleValue);
    }
};

// The unspecialized version of this templated class handles clamping to
// anything other than [unsigned] long long int limits.  It simply uses the
// class above to toggle between the "fast" and "safe" clamp implementations.
template<typename LimitType, typename ValueType> class ClampToHelper {
public:
    static inline LimitType clampTo(ValueType value, LimitType min, LimitType max)
    {
        // We only use clampToDirectComparison() when the integerness and
        // signedness of the two types matches.
        //
        // If the integerness of the types doesn't match, then at best
        // clampToDirectComparison() won't be much more efficient than the
        // cast-everything-to-double method, since we'll need to convert to
        // floating point anyway; at worst, we risk incorrect results when
        // clamping a float to a 32-bit integral type due to potential precision
        // loss.
        //
        // If the signedness doesn't match, clampToDirectComparison() will
        // produce warnings about comparing signed vs. unsigned, which are apt
        // since negative signed values will be converted to large unsigned ones
        // and we'll get incorrect results.
        return ClampToNonLongLongHelper<std::numeric_limits<LimitType>::is_integer == std::numeric_limits<ValueType>::is_integer && std::numeric_limits<LimitType>::is_signed == std::numeric_limits<ValueType>::is_signed, LimitType, ValueType>::clampTo(value, min, max);
    }
};

// Clamping to [unsigned] long long int limits requires more care.  These may
// not be accurately representable as doubles, so instead we cast |value| to the
// limit type.  But that cast is undefined if |value| is floating point and
// outside the representable range of the limit type, so we also have to check
// for that case explicitly.
template<typename ValueType> class ClampToHelper<long long int, ValueType> {
    STATIC_ONLY(ClampToHelper);
public:
    static inline long long int clampTo(ValueType value, long long int min, long long int max)
    {
        if (!std::numeric_limits<ValueType>::is_integer) {
            if (value > 0) {
                if (static_cast<double>(value) >= static_cast<double>(std::numeric_limits<long long int>::max()))
                    return max;
            } else if (static_cast<double>(value) <= static_cast<double>(std::numeric_limits<long long int>::min())) {
                return min;
            }
        }
        // Note: If |value| were unsigned long long int, it could be larger than
        // the largest long long int, and this code would be wrong; we handle
        // this case with a separate full specialization below.
        return clampToDirectComparison(static_cast<long long int>(value), min, max);
    }
};

// This specialization handles the case where the above partial specialization
// would be potentially incorrect.
template<> class ClampToHelper<long long int, unsigned long long int> {
    STATIC_ONLY(ClampToHelper);
public:
    static inline long long int clampTo(unsigned long long int value, long long int min, long long int max)
    {
        if (max <= 0 || value >= static_cast<unsigned long long int>(max))
            return max;
        const long long int longLongValue = static_cast<long long int>(value);
        return (longLongValue <= min) ? min : longLongValue;
    }
};

// This is similar to the partial specialization that clamps to long long int,
// but because the lower-bound check is done for integer value types as well, we
// don't need a <unsigned long long int, long long int> full specialization.
template<typename ValueType> class ClampToHelper<unsigned long long int, ValueType> {
    STATIC_ONLY(ClampToHelper);
public:
    static inline unsigned long long int clampTo(ValueType value, unsigned long long int min, unsigned long long int max)
    {
        if (value <= 0)
            return min;
        if (!std::numeric_limits<ValueType>::is_integer) {
            if (static_cast<double>(value) >= static_cast<double>(std::numeric_limits<unsigned long long int>::max()))
                return max;
        }
        return clampToDirectComparison(static_cast<unsigned long long int>(value), min, max);
    }
};

template<typename T> inline T defaultMaximumForClamp() { return std::numeric_limits<T>::max(); }
// This basically reimplements C++11's std::numeric_limits<T>::lowest().
template<typename T> inline T defaultMinimumForClamp() { return std::numeric_limits<T>::min(); }
template<> inline float defaultMinimumForClamp<float>() { return -std::numeric_limits<float>::max(); }
template<> inline double defaultMinimumForClamp<double>() { return -std::numeric_limits<double>::max(); }

// And, finally, the actual function for people to call.
template<typename LimitType, typename ValueType> inline LimitType clampTo(ValueType value, LimitType min = defaultMinimumForClamp<LimitType>(), LimitType max = defaultMaximumForClamp<LimitType>())
{
    ASSERT(!std::isnan(static_cast<double>(value)));
    ASSERT(min <= max); // This also ensures |min| and |max| aren't NaN.
    return ClampToHelper<LimitType, ValueType>::clampTo(value, min, max);
}

inline bool isWithinIntRange(float x)
{
    return x > static_cast<float>(std::numeric_limits<int>::min()) && x < static_cast<float>(std::numeric_limits<int>::max());
}

static size_t greatestCommonDivisor(size_t a, size_t b)
{
    return b ? greatestCommonDivisor(b, a % b) : a;
}

inline size_t lowestCommonMultiple(size_t a, size_t b)
{
    return a && b ? a / greatestCommonDivisor(a, b) * b : 0;
}

#ifndef UINT64_C
#if COMPILER(MSVC)
#define UINT64_C(c) c ## ui64
#else
#define UINT64_C(c) c ## ull
#endif
#endif

// Calculate d % 2^{64}.
inline void doubleToInteger(double d, unsigned long long& value)
{
    if (std::isnan(d) || std::isinf(d)) {
        value = 0;
    } else {
        // -2^{64} < fmodValue < 2^{64}.
        double fmodValue = fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0);
        if (fmodValue >= 0) {
            // 0 <= fmodValue < 2^{64}.
            // 0 <= value < 2^{64}. This cast causes no loss.
            value = static_cast<unsigned long long>(fmodValue);
        } else {
            // -2^{64} < fmodValue < 0.
            // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss.
            unsigned long long fmodValueInUnsignedLongLong = static_cast<unsigned long long>(-fmodValue);
            // -1 < (std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1.
            // 0 < value < 2^{64}.
            value = std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong + 1;
        }
    }
}

namespace WTF {

inline unsigned fastLog2(unsigned i)
{
    unsigned log2 = 0;
    if (i & (i - 1))
        log2 += 1;
    if (i >> 16)
        log2 += 16, i >>= 16;
    if (i >> 8)
        log2 += 8, i >>= 8;
    if (i >> 4)
        log2 += 4, i >>= 4;
    if (i >> 2)
        log2 += 2, i >>= 2;
    if (i >> 1)
        log2 += 1;
    return log2;
}

} // namespace WTF

#endif // #ifndef WTF_MathExtras_h