summaryrefslogtreecommitdiffstats
path: root/third_party/cld/base/casts.h
blob: 68f39d6f8769f3382cf78fd1aabfbc0fdeaf41c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
// Copyright (c) 2006-2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_CASTS_H_
#define BASE_CASTS_H_

#include <assert.h>         // for use with down_cast<>
#include <string.h>         // for memcpy

#include "base/macros.h"


// Use implicit_cast as a safe version of static_cast or const_cast
// for upcasting in the type hierarchy (i.e. casting a pointer to Foo
// to a pointer to SuperclassOfFoo or casting a pointer to Foo to
// a const pointer to Foo).
// When you use implicit_cast, the compiler checks that the cast is safe.
// Such explicit implicit_casts are necessary in surprisingly many
// situations where C++ demands an exact type match instead of an
// argument type convertable to a target type.
//
// The From type can be inferred, so the preferred syntax for using
// implicit_cast is the same as for static_cast etc.:
//
//   implicit_cast<ToType>(expr)
//
// implicit_cast would have been part of the C++ standard library,
// but the proposal was submitted too late.  It will probably make
// its way into the language in the future.
template<typename To, typename From>
inline To implicit_cast(From const &f) {
  return f;
}


// When you upcast (that is, cast a pointer from type Foo to type
// SuperclassOfFoo), it's fine to use implicit_cast<>, since upcasts
// always succeed.  When you downcast (that is, cast a pointer from
// type Foo to type SubclassOfFoo), static_cast<> isn't safe, because
// how do you know the pointer is really of type SubclassOfFoo?  It
// could be a bare Foo, or of type DifferentSubclassOfFoo.  Thus,
// when you downcast, you should use this macro.  In debug mode, we
// use dynamic_cast<> to double-check the downcast is legal (we die
// if it's not).  In normal mode, we do the efficient static_cast<>
// instead.  Thus, it's important to test in debug mode to make sure
// the cast is legal!
//    This is the only place in the code we should use dynamic_cast<>.
// In particular, you SHOULDN'T be using dynamic_cast<> in order to
// do RTTI (eg code like this:
//    if (dynamic_cast<Subclass1>(foo)) HandleASubclass1Object(foo);
//    if (dynamic_cast<Subclass2>(foo)) HandleASubclass2Object(foo);
// You should design the code some other way not to need this.

template<typename To, typename From>     // use like this: down_cast<T*>(foo);
inline To down_cast(From* f) {                   // so we only accept pointers
  // Ensures that To is a sub-type of From *.  This test is here only
  // for compile-time type checking, and has no overhead in an
  // optimized build at run-time, as it will be optimized away
  // completely.
  if (false) {
    implicit_cast<From*, To>(0);
  }

  assert(f == NULL || dynamic_cast<To>(f) != NULL);  // RTTI: debug mode only!
  return static_cast<To>(f);
}

// Overload of down_cast for references. Use like this: down_cast<T&>(foo).
// The code is slightly convoluted because we're still using the pointer
// form of dynamic cast. (The reference form throws an exception if it
// fails.)
//
// There's no need for a special const overload either for the pointer
// or the reference form. If you call down_cast with a const T&, the
// compiler will just bind From to const T.
template<typename To, typename From>
inline To down_cast(From& f) {
  COMPILE_ASSERT(base::is_reference<To>::value, target_type_not_a_reference);
  typedef typename base::remove_reference<To>::type* ToAsPointer;
  if (false) {
    // Compile-time check that To inherits from From. See above for details.
    implicit_cast<From*, ToAsPointer>(0);
  }

  assert(dynamic_cast<ToAsPointer>(&f) != NULL);  // RTTI: debug mode only
  return static_cast<To>(f);
}

// bit_cast<Dest,Source> is a template function that implements the
// equivalent of "*reinterpret_cast<Dest*>(&source)".  We need this in
// very low-level functions like the protobuf library and fast math
// support.
//
//   float f = 3.14159265358979;
//   int i = bit_cast<int32>(f);
//   // i = 0x40490fdb
//
// The classical address-casting method is:
//
//   // WRONG
//   float f = 3.14159265358979;            // WRONG
//   int i = * reinterpret_cast<int*>(&f);  // WRONG
//
// The address-casting method actually produces undefined behavior
// according to ISO C++ specification section 3.10 -15 -.  Roughly, this
// section says: if an object in memory has one type, and a program
// accesses it with a different type, then the result is undefined
// behavior for most values of "different type".
//
// This is true for any cast syntax, either *(int*)&f or
// *reinterpret_cast<int*>(&f).  And it is particularly true for
// conversions betweeen integral lvalues and floating-point lvalues.
//
// The purpose of 3.10 -15- is to allow optimizing compilers to assume
// that expressions with different types refer to different memory.  gcc
// 4.0.1 has an optimizer that takes advantage of this.  So a
// non-conforming program quietly produces wildly incorrect output.
//
// The problem is not the use of reinterpret_cast.  The problem is type
// punning: holding an object in memory of one type and reading its bits
// back using a different type.
//
// The C++ standard is more subtle and complex than this, but that
// is the basic idea.
//
// Anyways ...
//
// bit_cast<> calls memcpy() which is blessed by the standard,
// especially by the example in section 3.9 .  Also, of course,
// bit_cast<> wraps up the nasty logic in one place.
//
// Fortunately memcpy() is very fast.  In optimized mode, with a
// constant size, gcc 2.95.3, gcc 4.0.1, and msvc 7.1 produce inline
// code with the minimal amount of data movement.  On a 32-bit system,
// memcpy(d,s,4) compiles to one load and one store, and memcpy(d,s,8)
// compiles to two loads and two stores.
//
// I tested this code with gcc 2.95.3, gcc 4.0.1, icc 8.1, and msvc 7.1.
//
// WARNING: if Dest or Source is a non-POD type, the result of the memcpy
// is likely to surprise you.
//

template <class Dest, class Source>
inline Dest bit_cast(const Source& source) {
  // Compile time assertion: sizeof(Dest) == sizeof(Source)
  // A compile error here means your Dest and Source have different sizes.
  typedef char VerifySizesAreEqual [sizeof(Dest) == sizeof(Source) ? 1 : -1];

  Dest dest;
  memcpy(&dest, &source, sizeof(dest));
  return dest;
}

#endif  // BASE_CASTS_H_