summaryrefslogtreecommitdiffstats
path: root/third_party/tcmalloc/chromium/src/tcmalloc.cc
blob: f0e400f0a4060d8b894063e629a922de08e4ecd2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
// Copyright (c) 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// ---
// Author: Sanjay Ghemawat <opensource@google.com>
//
// A malloc that uses a per-thread cache to satisfy small malloc requests.
// (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
//
// See doc/tcmalloc.html for a high-level
// description of how this malloc works.
//
// SYNCHRONIZATION
//  1. The thread-specific lists are accessed without acquiring any locks.
//     This is safe because each such list is only accessed by one thread.
//  2. We have a lock per central free-list, and hold it while manipulating
//     the central free list for a particular size.
//  3. The central page allocator is protected by "pageheap_lock".
//  4. The pagemap (which maps from page-number to descriptor),
//     can be read without holding any locks, and written while holding
//     the "pageheap_lock".
//  5. To improve performance, a subset of the information one can get
//     from the pagemap is cached in a data structure, pagemap_cache_,
//     that atomically reads and writes its entries.  This cache can be
//     read and written without locking.
//
//     This multi-threaded access to the pagemap is safe for fairly
//     subtle reasons.  We basically assume that when an object X is
//     allocated by thread A and deallocated by thread B, there must
//     have been appropriate synchronization in the handoff of object
//     X from thread A to thread B.  The same logic applies to pagemap_cache_.
//
// THE PAGEID-TO-SIZECLASS CACHE
// Hot PageID-to-sizeclass mappings are held by pagemap_cache_.  If this cache
// returns 0 for a particular PageID then that means "no information," not that
// the sizeclass is 0.  The cache may have stale information for pages that do
// not hold the beginning of any free()'able object.  Staleness is eliminated
// in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
// do_memalign() for all other relevant pages.
//
// PAGEMAP
// -------
// Page map contains a mapping from page id to Span.
//
// If Span s occupies pages [p..q],
//      pagemap[p] == s
//      pagemap[q] == s
//      pagemap[p+1..q-1] are undefined
//      pagemap[p-1] and pagemap[q+1] are defined:
//         NULL if the corresponding page is not yet in the address space.
//         Otherwise it points to a Span.  This span may be free
//         or allocated.  If free, it is in one of pageheap's freelist.
//
// TODO: Bias reclamation to larger addresses
// TODO: implement mallinfo/mallopt
// TODO: Better testing
//
// 9/28/2003 (new page-level allocator replaces ptmalloc2):
// * malloc/free of small objects goes from ~300 ns to ~50 ns.
// * allocation of a reasonably complicated struct
//   goes from about 1100 ns to about 300 ns.

#include "config.h"
#include <gperftools/tcmalloc.h>

#include <errno.h>                      // for ENOMEM, EINVAL, errno
#ifdef HAVE_SYS_CDEFS_H
#include <sys/cdefs.h>                  // for __THROW
#endif
#if defined HAVE_STDINT_H
#include <stdint.h>
#elif defined HAVE_INTTYPES_H
#include <inttypes.h>
#else
#include <sys/types.h>
#endif
#include <stddef.h>                     // for size_t, NULL
#include <stdlib.h>                     // for getenv
#include <string.h>                     // for strcmp, memset, strlen, etc
#ifdef HAVE_UNISTD_H
#include <unistd.h>                     // for getpagesize, write, etc
#endif
#include <algorithm>                    // for max, min
#include <limits>                       // for numeric_limits
#include <new>                          // for nothrow_t (ptr only), etc
#include <vector>                       // for vector

#include <gperftools/malloc_extension.h>
#include <gperftools/malloc_hook.h>         // for MallocHook
#include "base/basictypes.h"            // for int64
#include "base/commandlineflags.h"      // for RegisterFlagValidator, etc
#include "base/dynamic_annotations.h"   // for RunningOnValgrind
#include "base/spinlock.h"              // for SpinLockHolder
#include "central_freelist.h"  // for CentralFreeListPadded
#include "common.h"            // for StackTrace, kPageShift, etc
#include "free_list.h"         // for FL_Init
#include "internal_logging.h"  // for ASSERT, TCMalloc_Printer, etc
#include "malloc_hook-inl.h"       // for MallocHook::InvokeNewHook, etc
#include "page_heap.h"         // for PageHeap, PageHeap::Stats
#include "page_heap_allocator.h"  // for PageHeapAllocator
#include "span.h"              // for Span, DLL_Prepend, etc
#include "stack_trace_table.h"  // for StackTraceTable
#include "static_vars.h"       // for Static
#include "system-alloc.h"      // for DumpSystemAllocatorStats, etc
#include "tcmalloc_guard.h"    // for TCMallocGuard
#include "thread_cache.h"      // for ThreadCache

// We only need malloc.h for struct mallinfo.
#ifdef HAVE_STRUCT_MALLINFO
// Malloc can be in several places on older versions of OS X.
# if defined(HAVE_MALLOC_H)
# include <malloc.h>
# elif defined(HAVE_SYS_MALLOC_H)
# include <sys/malloc.h>
# elif defined(HAVE_MALLOC_MALLOC_H)
# include <malloc/malloc.h>
# endif
#endif

#if (defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)) && !defined(WIN32_OVERRIDE_ALLOCATORS)
# define WIN32_DO_PATCHING 1
#endif

// Some windows file somewhere (at least on cygwin) #define's small (!)
// For instance, <windows.h> appears to have "#define small char".
#undef small

using STL_NAMESPACE::max;
using STL_NAMESPACE::numeric_limits;
using STL_NAMESPACE::vector;

#include "libc_override.h"

// __THROW is defined in glibc (via <sys/cdefs.h>).  It means,
// counter-intuitively, "This function will never throw an exception."
// It's an optional optimization tool, but we may need to use it to
// match glibc prototypes.
#ifndef __THROW    // I guess we're not on a glibc system
# define __THROW   // __THROW is just an optimization, so ok to make it ""
#endif

using tcmalloc::AlignmentForSize;
using tcmalloc::kLog;
using tcmalloc::kCrash;
using tcmalloc::kCrashWithStats;
using tcmalloc::Log;
using tcmalloc::PageHeap;
using tcmalloc::PageHeapAllocator;
using tcmalloc::SizeMap;
using tcmalloc::Span;
using tcmalloc::StackTrace;
using tcmalloc::Static;
using tcmalloc::ThreadCache;

// ---- Functions doing validation with an extra mark.
static size_t ExcludeSpaceForMark(size_t size);
static void AddRoomForMark(size_t* size);
static void ExcludeMarkFromSize(size_t* new_size);
static void MarkAllocatedRegion(void* ptr);
static void ValidateAllocatedRegion(void* ptr, size_t cl);
// ---- End validation functions.

DECLARE_int64(tcmalloc_sample_parameter);
DECLARE_double(tcmalloc_release_rate);

// For windows, the printf we use to report large allocs is
// potentially dangerous: it could cause a malloc that would cause an
// infinite loop.  So by default we set the threshold to a huge number
// on windows, so this bad situation will never trigger.  You can
// always set TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD manually if you
// want this functionality.
#ifdef _WIN32
const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 62;
#else
const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 30;
#endif
DEFINE_int64(tcmalloc_large_alloc_report_threshold,
             EnvToInt64("TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD",
                        kDefaultLargeAllocReportThreshold),
             "Allocations larger than this value cause a stack "
             "trace to be dumped to stderr.  The threshold for "
             "dumping stack traces is increased by a factor of 1.125 "
             "every time we print a message so that the threshold "
             "automatically goes up by a factor of ~1000 every 60 "
             "messages.  This bounds the amount of extra logging "
             "generated by this flag.  Default value of this flag "
             "is very large and therefore you should see no extra "
             "logging unless the flag is overridden.  Set to 0 to "
             "disable reporting entirely.");


// We already declared these functions in tcmalloc.h, but we have to
// declare them again to give them an ATTRIBUTE_SECTION: we want to
// put all callers of MallocHook::Invoke* in this module into
// ATTRIBUTE_SECTION(google_malloc) section, so that
// MallocHook::GetCallerStackTrace can function accurately.
extern "C" {
  void* tc_malloc(size_t size) __THROW
      ATTRIBUTE_SECTION(google_malloc);
  void tc_free(void* ptr) __THROW
      ATTRIBUTE_SECTION(google_malloc);
  void* tc_realloc(void* ptr, size_t size) __THROW
      ATTRIBUTE_SECTION(google_malloc);
  void* tc_calloc(size_t nmemb, size_t size) __THROW
      ATTRIBUTE_SECTION(google_malloc);
  void tc_cfree(void* ptr) __THROW
      ATTRIBUTE_SECTION(google_malloc);

  void* tc_memalign(size_t __alignment, size_t __size) __THROW
      ATTRIBUTE_SECTION(google_malloc);
  int tc_posix_memalign(void** ptr, size_t align, size_t size) __THROW
      ATTRIBUTE_SECTION(google_malloc);
  void* tc_valloc(size_t __size) __THROW
      ATTRIBUTE_SECTION(google_malloc);
  void* tc_pvalloc(size_t __size) __THROW
      ATTRIBUTE_SECTION(google_malloc);

  void tc_malloc_stats(void) __THROW
      ATTRIBUTE_SECTION(google_malloc);
  int tc_mallopt(int cmd, int value) __THROW
      ATTRIBUTE_SECTION(google_malloc);
#ifdef HAVE_STRUCT_MALLINFO
  struct mallinfo tc_mallinfo(void) __THROW
      ATTRIBUTE_SECTION(google_malloc);
#endif

  void* tc_new(size_t size)
      ATTRIBUTE_SECTION(google_malloc);
  void tc_delete(void* p) __THROW
      ATTRIBUTE_SECTION(google_malloc);
  void* tc_newarray(size_t size)
      ATTRIBUTE_SECTION(google_malloc);
  void tc_deletearray(void* p) __THROW
      ATTRIBUTE_SECTION(google_malloc);

  // And the nothrow variants of these:
  void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW
      ATTRIBUTE_SECTION(google_malloc);
  void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) __THROW
      ATTRIBUTE_SECTION(google_malloc);
  // Surprisingly, standard C++ library implementations use a
  // nothrow-delete internally.  See, eg:
  // http://www.dinkumware.com/manuals/?manual=compleat&page=new.html
  void tc_delete_nothrow(void* ptr, const std::nothrow_t&) __THROW
      ATTRIBUTE_SECTION(google_malloc);
  void tc_deletearray_nothrow(void* ptr, const std::nothrow_t&) __THROW
      ATTRIBUTE_SECTION(google_malloc);

  // Some non-standard extensions that we support.

  // This is equivalent to
  //    OS X: malloc_size()
  //    glibc: malloc_usable_size()
  //    Windows: _msize()
  size_t tc_malloc_size(void* p) __THROW
      ATTRIBUTE_SECTION(google_malloc);
}  // extern "C"


// ----------------------- IMPLEMENTATION -------------------------------

static int tc_new_mode = 0;  // See tc_set_new_mode().

// Routines such as free() and realloc() catch some erroneous pointers
// passed to them, and invoke the below when they do.  (An erroneous pointer
// won't be caught if it's within a valid span or a stale span for which
// the pagemap cache has a non-zero sizeclass.) This is a cheap (source-editing
// required) kind of exception handling for these routines.
namespace {
void InvalidFree(void* ptr) {
  Log(kCrash, __FILE__, __LINE__, "Attempt to free invalid pointer", ptr);
}

size_t InvalidGetSizeForRealloc(const void* old_ptr) {
  Log(kCrash, __FILE__, __LINE__,
      "Attempt to realloc invalid pointer", old_ptr);
  return 0;
}

size_t InvalidGetAllocatedSize(const void* ptr) {
  Log(kCrash, __FILE__, __LINE__,
      "Attempt to get the size of an invalid pointer", ptr);
  return 0;
}
}  // unnamed namespace

// Extract interesting stats
struct TCMallocStats {
  uint64_t thread_bytes;      // Bytes in thread caches
  uint64_t central_bytes;     // Bytes in central cache
  uint64_t transfer_bytes;    // Bytes in central transfer cache
  uint64_t metadata_bytes;    // Bytes alloced for metadata
  PageHeap::Stats pageheap;   // Stats from page heap
};

// Get stats into "r".  Also get per-size-class counts if class_count != NULL
static void ExtractStats(TCMallocStats* r, uint64_t* class_count,
                         PageHeap::SmallSpanStats* small_spans,
                         PageHeap::LargeSpanStats* large_spans) {
  r->central_bytes = 0;
  r->transfer_bytes = 0;
  for (int cl = 0; cl < kNumClasses; ++cl) {
    const int length = Static::central_cache()[cl].length();
    const int tc_length = Static::central_cache()[cl].tc_length();
    const size_t cache_overhead = Static::central_cache()[cl].OverheadBytes();
    const size_t size = static_cast<uint64_t>(
        Static::sizemap()->ByteSizeForClass(cl));
    r->central_bytes += (size * length) + cache_overhead;
    r->transfer_bytes += (size * tc_length);
    if (class_count) class_count[cl] = length + tc_length;
  }

  // Add stats from per-thread heaps
  r->thread_bytes = 0;
  { // scope
    SpinLockHolder h(Static::pageheap_lock());
    ThreadCache::GetThreadStats(&r->thread_bytes, class_count);
    r->metadata_bytes = tcmalloc::metadata_system_bytes();
    r->pageheap = Static::pageheap()->stats();
    if (small_spans != NULL) {
      Static::pageheap()->GetSmallSpanStats(small_spans);
    }
    if (large_spans != NULL) {
      Static::pageheap()->GetLargeSpanStats(large_spans);
    }
  }
}

static double PagesToMiB(uint64_t pages) {
  return (pages << kPageShift) / 1048576.0;
}

// WRITE stats to "out"
static void DumpStats(TCMalloc_Printer* out, int level) {
  TCMallocStats stats;
  uint64_t class_count[kNumClasses];
  PageHeap::SmallSpanStats small;
  PageHeap::LargeSpanStats large;
  if (level >= 2) {
    ExtractStats(&stats, class_count, &small, &large);
  } else {
    ExtractStats(&stats, NULL, NULL, NULL);
  }

  static const double MiB = 1048576.0;

  const uint64_t virtual_memory_used = (stats.pageheap.system_bytes
                                        + stats.metadata_bytes);
  const uint64_t physical_memory_used = (virtual_memory_used
                                         - stats.pageheap.unmapped_bytes);
  const uint64_t bytes_in_use_by_app = (physical_memory_used
                                        - stats.metadata_bytes
                                        - stats.pageheap.free_bytes
                                        - stats.central_bytes
                                        - stats.transfer_bytes
                                        - stats.thread_bytes);

  out->printf(
      "WASTE: %7.1f MiB committed but not used\n"
      "WASTE: %7.1f MiB bytes committed, %7.1f MiB bytes in use\n"
      "WASTE: committed/used ratio of %f\n",
      (stats.pageheap.committed_bytes - bytes_in_use_by_app) / MiB,
      stats.pageheap.committed_bytes / MiB,
      bytes_in_use_by_app / MiB,
      stats.pageheap.committed_bytes / static_cast<double>(bytes_in_use_by_app)
      );
#ifdef TCMALLOC_SMALL_BUT_SLOW
  out->printf(
      "NOTE:  SMALL MEMORY MODEL IS IN USE, PERFORMANCE MAY SUFFER.\n");
#endif
  out->printf(
      "------------------------------------------------\n"
      "MALLOC:   %12" PRIu64 " (%7.1f MiB) Bytes in use by application\n"
      "MALLOC: %12" PRIu64 " (%7.1f MB) Bytes committed\n"
      "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in page heap freelist\n"
      "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in central cache freelist\n"
      "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in transfer cache freelist\n"
      "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in thread cache freelists\n"
      "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in malloc metadata\n"
      "MALLOC:   ------------\n"
      "MALLOC: = %12" PRIu64 " (%7.1f MiB) Actual memory used (physical + swap)\n"
      "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes released to OS (aka unmapped)\n"
      "MALLOC:   ------------\n"
      "MALLOC: = %12" PRIu64 " (%7.1f MiB) Virtual address space used\n"
      "MALLOC:\n"
      "MALLOC:   %12" PRIu64 "              Spans in use\n"
      "MALLOC:   %12" PRIu64 "              Thread heaps in use\n"
      "MALLOC:   %12" PRIu64 "              Tcmalloc page size\n"
      "------------------------------------------------\n"
      "Call ReleaseFreeMemory() to release freelist memory to the OS"
      " (via madvise()).\n"
      "Bytes released to the OS take up virtual address space"
      " but no physical memory.\n",
      bytes_in_use_by_app, bytes_in_use_by_app / MiB,
      stats.pageheap.committed_bytes, stats.pageheap.committed_bytes / MiB,
      stats.pageheap.free_bytes, stats.pageheap.free_bytes / MiB,
      stats.central_bytes, stats.central_bytes / MiB,
      stats.transfer_bytes, stats.transfer_bytes / MiB,
      stats.thread_bytes, stats.thread_bytes / MiB,
      stats.metadata_bytes, stats.metadata_bytes / MiB,
      physical_memory_used, physical_memory_used / MiB,
      stats.pageheap.unmapped_bytes, stats.pageheap.unmapped_bytes / MiB,
      virtual_memory_used, virtual_memory_used / MiB,
      uint64_t(Static::span_allocator()->inuse()),
      uint64_t(ThreadCache::HeapsInUse()),
      uint64_t(kPageSize));

  if (level >= 2) {
    out->printf("------------------------------------------------\n");
    out->printf("Size class breakdown\n");
    out->printf("------------------------------------------------\n");
    uint64_t cumulative = 0;
    for (int cl = 0; cl < kNumClasses; ++cl) {
      if (class_count[cl] > 0) {
        uint64_t class_bytes =
            class_count[cl] * Static::sizemap()->ByteSizeForClass(cl);
        cumulative += class_bytes;
        out->printf("class %3d [ %8" PRIuS " bytes ] : "
                "%8" PRIu64 " objs; %5.1f MiB; %5.1f cum MiB\n",
                cl, Static::sizemap()->ByteSizeForClass(cl),
                class_count[cl],
                class_bytes / MiB,
                cumulative / MiB);
      }
    }

    // append page heap info
    int nonempty_sizes = 0;
    for (int s = 0; s < kMaxPages; s++) {
      if (small.normal_length[s] + small.returned_length[s] > 0) {
        nonempty_sizes++;
      }
    }
    out->printf("------------------------------------------------\n");
    out->printf("PageHeap: %d sizes; %6.1f MiB free; %6.1f MiB unmapped\n",
                nonempty_sizes, stats.pageheap.free_bytes / MiB,
                stats.pageheap.unmapped_bytes / MiB);
    out->printf("------------------------------------------------\n");
    uint64_t total_normal = 0;
    uint64_t total_returned = 0;
    for (int s = 0; s < kMaxPages; s++) {
      const int n_length = small.normal_length[s];
      const int r_length = small.returned_length[s];
      if (n_length + r_length > 0) {
        uint64_t n_pages = s * n_length;
        uint64_t r_pages = s * r_length;
        total_normal += n_pages;
        total_returned += r_pages;
        out->printf("%6u pages * %6u spans ~ %6.1f MiB; %6.1f MiB cum"
                    "; unmapped: %6.1f MiB; %6.1f MiB cum\n",
                    s,
                    (n_length + r_length),
                    PagesToMiB(n_pages + r_pages),
                    PagesToMiB(total_normal + total_returned),
                    PagesToMiB(r_pages),
                    PagesToMiB(total_returned));
      }
    }

    total_normal += large.normal_pages;
    total_returned += large.returned_pages;
    out->printf(">255   large * %6u spans ~ %6.1f MiB; %6.1f MiB cum"
                "; unmapped: %6.1f MiB; %6.1f MiB cum\n",
                static_cast<unsigned int>(large.spans),
                PagesToMiB(large.normal_pages + large.returned_pages),
                PagesToMiB(total_normal + total_returned),
                PagesToMiB(large.returned_pages),
                PagesToMiB(total_returned));
  }
}

static void PrintStats(int level) {
  const int kBufferSize = 16 << 10;
  char* buffer = new char[kBufferSize];
  TCMalloc_Printer printer(buffer, kBufferSize);
  DumpStats(&printer, level);
  write(STDERR_FILENO, buffer, strlen(buffer));
  delete[] buffer;
}

static void** DumpHeapGrowthStackTraces() {
  // Count how much space we need
  int needed_slots = 0;
  {
    SpinLockHolder h(Static::pageheap_lock());
    for (StackTrace* t = Static::growth_stacks();
         t != NULL;
         t = reinterpret_cast<StackTrace*>(
             t->stack[tcmalloc::kMaxStackDepth-1])) {
      needed_slots += 3 + t->depth;
    }
    needed_slots += 100;            // Slop in case list grows
    needed_slots += needed_slots/8; // An extra 12.5% slop
  }

  void** result = new void*[needed_slots];
  if (result == NULL) {
    Log(kLog, __FILE__, __LINE__,
        "tcmalloc: allocation failed for stack trace slots",
        needed_slots * sizeof(*result));
    return NULL;
  }

  SpinLockHolder h(Static::pageheap_lock());
  int used_slots = 0;
  for (StackTrace* t = Static::growth_stacks();
       t != NULL;
       t = reinterpret_cast<StackTrace*>(
           t->stack[tcmalloc::kMaxStackDepth-1])) {
    ASSERT(used_slots < needed_slots);  // Need to leave room for terminator
    if (used_slots + 3 + t->depth >= needed_slots) {
      // No more room
      break;
    }

    result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
    result[used_slots+1] = reinterpret_cast<void*>(t->size);
    result[used_slots+2] = reinterpret_cast<void*>(t->depth);
    for (int d = 0; d < t->depth; d++) {
      result[used_slots+3+d] = t->stack[d];
    }
    used_slots += 3 + t->depth;
  }
  result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
  return result;
}

static void IterateOverRanges(void* arg, MallocExtension::RangeFunction func) {
  PageID page = 1;  // Some code may assume that page==0 is never used
  bool done = false;
  while (!done) {
    // Accumulate a small number of ranges in a local buffer
    static const int kNumRanges = 16;
    static base::MallocRange ranges[kNumRanges];
    int n = 0;
    {
      SpinLockHolder h(Static::pageheap_lock());
      while (n < kNumRanges) {
        if (!Static::pageheap()->GetNextRange(page, &ranges[n])) {
          done = true;
          break;
        } else {
          uintptr_t limit = ranges[n].address + ranges[n].length;
          page = (limit + kPageSize - 1) >> kPageShift;
          n++;
        }
      }
    }

    for (int i = 0; i < n; i++) {
      (*func)(arg, &ranges[i]);
    }
  }
}

// TCMalloc's support for extra malloc interfaces
class TCMallocImplementation : public MallocExtension {
 private:
  // ReleaseToSystem() might release more than the requested bytes because
  // the page heap releases at the span granularity, and spans are of wildly
  // different sizes.  This member keeps track of the extra bytes bytes
  // released so that the app can periodically call ReleaseToSystem() to
  // release memory at a constant rate.
  // NOTE: Protected by Static::pageheap_lock().
  size_t extra_bytes_released_;

 public:
  TCMallocImplementation()
      : extra_bytes_released_(0) {
  }

  virtual void GetStats(char* buffer, int buffer_length) {
    ASSERT(buffer_length > 0);
    TCMalloc_Printer printer(buffer, buffer_length);

    // Print level one stats unless lots of space is available
    if (buffer_length < 10000) {
      DumpStats(&printer, 1);
    } else {
      DumpStats(&printer, 2);
    }
  }

  // We may print an extra, tcmalloc-specific warning message here.
  virtual void GetHeapSample(MallocExtensionWriter* writer) {
    if (FLAGS_tcmalloc_sample_parameter == 0) {
      const char* const kWarningMsg =
          "%warn\n"
          "%warn This heap profile does not have any data in it, because\n"
          "%warn the application was run with heap sampling turned off.\n"
          "%warn To get useful data from GetHeapSample(), you must\n"
          "%warn set the environment variable TCMALLOC_SAMPLE_PARAMETER to\n"
          "%warn a positive sampling period, such as 524288.\n"
          "%warn\n";
      writer->append(kWarningMsg, strlen(kWarningMsg));
    }
    MallocExtension::GetHeapSample(writer);
  }

  virtual void** ReadStackTraces(int* sample_period) {
    tcmalloc::StackTraceTable table;
    {
      SpinLockHolder h(Static::pageheap_lock());
      Span* sampled = Static::sampled_objects();
      for (Span* s = sampled->next; s != sampled; s = s->next) {
        table.AddTrace(*reinterpret_cast<StackTrace*>(s->objects));
      }
    }
    *sample_period = ThreadCache::GetCache()->GetSamplePeriod();
    return table.ReadStackTracesAndClear(); // grabs and releases pageheap_lock
  }

  virtual void** ReadHeapGrowthStackTraces() {
    return DumpHeapGrowthStackTraces();
  }

  virtual void Ranges(void* arg, RangeFunction func) {
    IterateOverRanges(arg, func);
  }

  virtual bool GetNumericProperty(const char* name, size_t* value) {
    ASSERT(name != NULL);

    if (strcmp(name, "generic.current_allocated_bytes") == 0) {
      TCMallocStats stats;
      ExtractStats(&stats, NULL, NULL, NULL);
      *value = stats.pageheap.system_bytes
               - stats.thread_bytes
               - stats.central_bytes
               - stats.transfer_bytes
               - stats.pageheap.free_bytes
               - stats.pageheap.unmapped_bytes;
      return true;
    }

    if (strcmp(name, "generic.heap_size") == 0) {
      TCMallocStats stats;
      ExtractStats(&stats, NULL, NULL, NULL);
      *value = stats.pageheap.system_bytes;
      return true;
    }

    if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
      // Kept for backwards compatibility.  Now defined externally as:
      //    pageheap_free_bytes + pageheap_unmapped_bytes.
      SpinLockHolder l(Static::pageheap_lock());
      PageHeap::Stats stats = Static::pageheap()->stats();
      *value = stats.free_bytes + stats.unmapped_bytes;
      return true;
    }

    if (strcmp(name, "tcmalloc.pageheap_free_bytes") == 0) {
      SpinLockHolder l(Static::pageheap_lock());
      *value = Static::pageheap()->stats().free_bytes;
      return true;
    }

    if (strcmp(name, "tcmalloc.pageheap_unmapped_bytes") == 0) {
      SpinLockHolder l(Static::pageheap_lock());
      *value = Static::pageheap()->stats().unmapped_bytes;
      return true;
    }

    if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
      SpinLockHolder l(Static::pageheap_lock());
      *value = ThreadCache::overall_thread_cache_size();
      return true;
    }

    if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
      TCMallocStats stats;
      ExtractStats(&stats, NULL, NULL, NULL);
      *value = stats.thread_bytes;
      return true;
    }

    return false;
  }

  virtual bool SetNumericProperty(const char* name, size_t value) {
    ASSERT(name != NULL);

    if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
      SpinLockHolder l(Static::pageheap_lock());
      ThreadCache::set_overall_thread_cache_size(value);
      return true;
    }

    return false;
  }

  virtual void MarkThreadIdle() {
    ThreadCache::BecomeIdle();
  }

  virtual void MarkThreadBusy();  // Implemented below

  virtual SysAllocator* GetSystemAllocator() {
    SpinLockHolder h(Static::pageheap_lock());
    return sys_alloc;
  }

  virtual void SetSystemAllocator(SysAllocator* alloc) {
    SpinLockHolder h(Static::pageheap_lock());
    sys_alloc = alloc;
  }

  virtual void ReleaseToSystem(size_t num_bytes) {
    SpinLockHolder h(Static::pageheap_lock());
    if (num_bytes <= extra_bytes_released_) {
      // We released too much on a prior call, so don't release any
      // more this time.
      extra_bytes_released_ = extra_bytes_released_ - num_bytes;
      return;
    }
    num_bytes = num_bytes - extra_bytes_released_;
    // num_bytes might be less than one page.  If we pass zero to
    // ReleaseAtLeastNPages, it won't do anything, so we release a whole
    // page now and let extra_bytes_released_ smooth it out over time.
    Length num_pages = max<Length>(num_bytes >> kPageShift, 1);
    size_t bytes_released = Static::pageheap()->ReleaseAtLeastNPages(
        num_pages) << kPageShift;
    if (bytes_released > num_bytes) {
      extra_bytes_released_ = bytes_released - num_bytes;
    } else {
      // The PageHeap wasn't able to release num_bytes.  Don't try to
      // compensate with a big release next time.  Specifically,
      // ReleaseFreeMemory() calls ReleaseToSystem(LONG_MAX).
      extra_bytes_released_ = 0;
    }
  }

  virtual void SetMemoryReleaseRate(double rate) {
    FLAGS_tcmalloc_release_rate = rate;
  }

  virtual double GetMemoryReleaseRate() {
    return FLAGS_tcmalloc_release_rate;
  }
  virtual size_t GetEstimatedAllocatedSize(size_t size) {
    if (size <= kMaxSize) {
      const size_t cl = Static::sizemap()->SizeClass(size);
      const size_t alloc_size = Static::sizemap()->ByteSizeForClass(cl);
      return alloc_size;
    } else {
      return tcmalloc::pages(size) << kPageShift;
    }
  }

  // This just calls GetSizeWithCallback, but because that's in an
  // unnamed namespace, we need to move the definition below it in the
  // file.
  virtual size_t GetAllocatedSize(const void* ptr);

  // This duplicates some of the logic in GetSizeWithCallback, but is
  // faster.  This is important on OS X, where this function is called
  // on every allocation operation.
  virtual Ownership GetOwnership(const void* ptr) {
    const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
    // The rest of tcmalloc assumes that all allocated pointers use at
    // most kAddressBits bits.  If ptr doesn't, then it definitely
    // wasn't alloacted by tcmalloc.
    if ((p >> (kAddressBits - kPageShift)) > 0) {
      return kNotOwned;
    }
    size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
    if (cl != 0) {
      return kOwned;
    }
    const Span *span = Static::pageheap()->GetDescriptor(p);
    return span ? kOwned : kNotOwned;
  }

  virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) {
    static const char* kCentralCacheType = "tcmalloc.central";
    static const char* kTransferCacheType = "tcmalloc.transfer";
    static const char* kThreadCacheType = "tcmalloc.thread";
    static const char* kPageHeapType = "tcmalloc.page";
    static const char* kPageHeapUnmappedType = "tcmalloc.page_unmapped";
    static const char* kLargeSpanType = "tcmalloc.large";
    static const char* kLargeUnmappedSpanType = "tcmalloc.large_unmapped";

    v->clear();

    // central class information
    int64 prev_class_size = 0;
    for (int cl = 1; cl < kNumClasses; ++cl) {
      size_t class_size = Static::sizemap()->ByteSizeForClass(cl);
      MallocExtension::FreeListInfo i;
      i.min_object_size = prev_class_size + 1;
      i.max_object_size = class_size;
      i.total_bytes_free =
          Static::central_cache()[cl].length() * class_size;
      i.type = kCentralCacheType;
      v->push_back(i);

      // transfer cache
      i.total_bytes_free =
          Static::central_cache()[cl].tc_length() * class_size;
      i.type = kTransferCacheType;
      v->push_back(i);

      prev_class_size = Static::sizemap()->ByteSizeForClass(cl);
    }

    // Add stats from per-thread heaps
    uint64_t class_count[kNumClasses];
    memset(class_count, 0, sizeof(class_count));
    {
      SpinLockHolder h(Static::pageheap_lock());
      uint64_t thread_bytes = 0;
      ThreadCache::GetThreadStats(&thread_bytes, class_count);
    }

    prev_class_size = 0;
    for (int cl = 1; cl < kNumClasses; ++cl) {
      MallocExtension::FreeListInfo i;
      i.min_object_size = prev_class_size + 1;
      i.max_object_size = Static::sizemap()->ByteSizeForClass(cl);
      i.total_bytes_free =
          class_count[cl] * Static::sizemap()->ByteSizeForClass(cl);
      i.type = kThreadCacheType;
      v->push_back(i);
    }

    // append page heap info
    PageHeap::SmallSpanStats small;
    PageHeap::LargeSpanStats large;
    {
      SpinLockHolder h(Static::pageheap_lock());
      Static::pageheap()->GetSmallSpanStats(&small);
      Static::pageheap()->GetLargeSpanStats(&large);
    }

    // large spans: mapped
    MallocExtension::FreeListInfo span_info;
    span_info.type = kLargeSpanType;
    span_info.max_object_size = (numeric_limits<size_t>::max)();
    span_info.min_object_size = kMaxPages << kPageShift;
    span_info.total_bytes_free = large.normal_pages << kPageShift;
    v->push_back(span_info);

    // large spans: unmapped
    span_info.type = kLargeUnmappedSpanType;
    span_info.total_bytes_free = large.returned_pages << kPageShift;
    v->push_back(span_info);

    // small spans
    for (int s = 1; s < kMaxPages; s++) {
      MallocExtension::FreeListInfo i;
      i.max_object_size = (s << kPageShift);
      i.min_object_size = ((s - 1) << kPageShift);

      i.type = kPageHeapType;
      i.total_bytes_free = (s << kPageShift) * small.normal_length[s];
      v->push_back(i);

      i.type = kPageHeapUnmappedType;
      i.total_bytes_free = (s << kPageShift) * small.returned_length[s];
      v->push_back(i);
    }
  }
};

// The constructor allocates an object to ensure that initialization
// runs before main(), and therefore we do not have a chance to become
// multi-threaded before initialization.  We also create the TSD key
// here.  Presumably by the time this constructor runs, glibc is in
// good enough shape to handle pthread_key_create().
//
// The constructor also takes the opportunity to tell STL to use
// tcmalloc.  We want to do this early, before construct time, so
// all user STL allocations go through tcmalloc (which works really
// well for STL).
//
// The destructor prints stats when the program exits.
static int tcmallocguard_refcount = 0;  // no lock needed: runs before main()
TCMallocGuard::TCMallocGuard() {
  if (tcmallocguard_refcount++ == 0) {
#ifdef HAVE_TLS    // this is true if the cc/ld/libc combo support TLS
    // Check whether the kernel also supports TLS (needs to happen at runtime)
    tcmalloc::CheckIfKernelSupportsTLS();
#endif
    ReplaceSystemAlloc();    // defined in libc_override_*.h
    tc_free(tc_malloc(1));
    ThreadCache::InitTSD();
    tc_free(tc_malloc(1));
    // Either we, or debugallocation.cc, or valgrind will control memory
    // management.  We register our extension if we're the winner.
#ifdef TCMALLOC_USING_DEBUGALLOCATION
    // Let debugallocation register its extension.
#else
    if (RunningOnValgrind()) {
      // Let Valgrind uses its own malloc (so don't register our extension).
    } else {
      MallocExtension::Register(new TCMallocImplementation);
    }
#endif
  }
}

TCMallocGuard::~TCMallocGuard() {
  if (--tcmallocguard_refcount == 0) {
    const char* env = getenv("MALLOCSTATS");
    if (env != NULL) {
      int level = atoi(env);
      if (level < 1) level = 1;
      PrintStats(level);
    }
  }
}
#ifndef WIN32_OVERRIDE_ALLOCATORS
static TCMallocGuard module_enter_exit_hook;
#endif

//-------------------------------------------------------------------
// Helpers for the exported routines below
//-------------------------------------------------------------------

static inline bool CheckCachedSizeClass(void *ptr) {
  PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
  size_t cached_value = Static::pageheap()->GetSizeClassIfCached(p);
  return cached_value == 0 ||
      cached_value == Static::pageheap()->GetDescriptor(p)->sizeclass;
}

static inline void* CheckedMallocResult(void *result) {
  ASSERT(result == NULL || CheckCachedSizeClass(result));
  MarkAllocatedRegion(result);
  return result;
}

static inline void* SpanToMallocResult(Span *span) {
  Static::pageheap()->CacheSizeClass(span->start, 0);
  return
      CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
}

static void* DoSampledAllocation(size_t size) {
  // Grab the stack trace outside the heap lock
  StackTrace tmp;
  tmp.depth = GetStackTrace(tmp.stack, tcmalloc::kMaxStackDepth, 1);
  tmp.size = size;

  SpinLockHolder h(Static::pageheap_lock());
  // Allocate span
  Span *span = Static::pageheap()->New(tcmalloc::pages(size == 0 ? 1 : size));
  if (span == NULL) {
    return NULL;
  }

  // Allocate stack trace
  StackTrace *stack = Static::stacktrace_allocator()->New();
  if (stack == NULL) {
    // Sampling failed because of lack of memory
    return span;
  }
  *stack = tmp;
  span->sample = 1;
  span->objects = stack;
  tcmalloc::DLL_Prepend(Static::sampled_objects(), span);

  return SpanToMallocResult(span);
}

namespace {

// Copy of FLAGS_tcmalloc_large_alloc_report_threshold with
// automatic increases factored in.
static int64_t large_alloc_threshold =
  (kPageSize > FLAGS_tcmalloc_large_alloc_report_threshold
   ? kPageSize : FLAGS_tcmalloc_large_alloc_report_threshold);

static void ReportLargeAlloc(Length num_pages, void* result) {
  StackTrace stack;
  stack.depth = GetStackTrace(stack.stack, tcmalloc::kMaxStackDepth, 1);

  static const int N = 1000;
  char buffer[N];
  TCMalloc_Printer printer(buffer, N);
  printer.printf("tcmalloc: large alloc %"PRIu64" bytes == %p @ ",
                 static_cast<uint64>(num_pages) << kPageShift,
                 result);
  for (int i = 0; i < stack.depth; i++) {
    printer.printf(" %p", stack.stack[i]);
  }
  printer.printf("\n");
  write(STDERR_FILENO, buffer, strlen(buffer));
}

inline void* cpp_alloc(size_t size, bool nothrow);
inline void* do_malloc(size_t size);

// TODO(willchan): Investigate whether or not inlining this much is harmful to
// performance.
// This is equivalent to do_malloc() except when tc_new_mode is set to true.
// Otherwise, it will run the std::new_handler if set.
inline void* do_malloc_or_cpp_alloc(size_t size) {
  return tc_new_mode ? cpp_alloc(size, true) : do_malloc(size);
}

void* cpp_memalign(size_t align, size_t size);
void* do_memalign(size_t align, size_t size);

inline void* do_memalign_or_cpp_memalign(size_t align, size_t size) {
  return tc_new_mode ? cpp_memalign(align, size) : do_memalign(align, size);
}

// Must be called with the page lock held.
inline bool should_report_large(Length num_pages) {
  const int64 threshold = large_alloc_threshold;
  if (threshold > 0 && num_pages >= (threshold >> kPageShift)) {
    // Increase the threshold by 1/8 every time we generate a report.
    // We cap the threshold at 8GiB to avoid overflow problems.
    large_alloc_threshold = (threshold + threshold/8 < 8ll<<30
                             ? threshold + threshold/8 : 8ll<<30);
    return true;
  }
  return false;
}

// Helper for do_malloc().
inline void* do_malloc_pages(ThreadCache* heap, size_t size) {
  void* result;
  bool report_large;

  Length num_pages = tcmalloc::pages(size);
  size = num_pages << kPageShift;

  heap->AddToByteAllocatedTotal(size);  // Chromium profiling.

  if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
    result = DoSampledAllocation(size);

    SpinLockHolder h(Static::pageheap_lock());
    report_large = should_report_large(num_pages);
  } else {
    SpinLockHolder h(Static::pageheap_lock());
    Span* span = Static::pageheap()->New(num_pages);
    result = (span == NULL ? NULL : SpanToMallocResult(span));
    report_large = should_report_large(num_pages);
  }

  if (report_large) {
    ReportLargeAlloc(num_pages, result);
  }
  return result;
}

inline void* do_malloc(size_t size) {
  AddRoomForMark(&size);

  void* ret = NULL;

  // The following call forces module initialization
  ThreadCache* heap = ThreadCache::GetCache();
  if (size <= kMaxSize) {
    size_t cl = Static::sizemap()->SizeClass(size);
    size = Static::sizemap()->class_to_size(cl);

    // TODO(jar): If this has any detectable performance impact, it can be
    // optimized by only tallying sizes if the profiler was activated to recall
    // these tallies.  I don't think this is performance critical, but we really
    // should measure it.
    heap->AddToByteAllocatedTotal(size);  // Chromium profiling.

    if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
      ret = DoSampledAllocation(size);
      MarkAllocatedRegion(ret);
    } else {
      // The common case, and also the simplest.  This just pops the
      // size-appropriate freelist, after replenishing it if it's empty.
      ret = CheckedMallocResult(heap->Allocate(size, cl));
    }
  } else {
    ret = do_malloc_pages(heap, size);
    MarkAllocatedRegion(ret);
  }
  if (ret == NULL) errno = ENOMEM;
  return ret;
}

inline void* do_calloc(size_t n, size_t elem_size) {
  // Overflow check
  const size_t size = n * elem_size;
  if (elem_size != 0 && size / elem_size != n) return NULL;

  void* result = do_malloc_or_cpp_alloc(size);
  if (result != NULL) {
    memset(result, 0, size);
  }
  return result;
}

static inline ThreadCache* GetCacheIfPresent() {
  void* const p = ThreadCache::GetCacheIfPresent();
  return reinterpret_cast<ThreadCache*>(p);
}

// This lets you call back to a given function pointer if ptr is invalid.
// It is used primarily by windows code which wants a specialized callback.
inline void do_free_with_callback(void* ptr, void (*invalid_free_fn)(void*)) {
  if (ptr == NULL) return;
  if (Static::pageheap() == NULL) {
    // We called free() before malloc().  This can occur if the
    // (system) malloc() is called before tcmalloc is loaded, and then
    // free() is called after tcmalloc is loaded (and tc_free has
    // replaced free), but before the global constructor has run that
    // sets up the tcmalloc data structures.
    (*invalid_free_fn)(ptr);  // Decide how to handle the bad free request
    return;
  }
  const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
  Span* span = NULL;
  size_t cl = Static::pageheap()->GetSizeClassIfCached(p);

  if (cl == 0) {
    span = Static::pageheap()->GetDescriptor(p);
    if (!span) {
      // span can be NULL because the pointer passed in is invalid
      // (not something returned by malloc or friends), or because the
      // pointer was allocated with some other allocator besides
      // tcmalloc.  The latter can happen if tcmalloc is linked in via
      // a dynamic library, but is not listed last on the link line.
      // In that case, libraries after it on the link line will
      // allocate with libc malloc, but free with tcmalloc's free.
      (*invalid_free_fn)(ptr);  // Decide how to handle the bad free request
      return;
    }
    cl = span->sizeclass;
    Static::pageheap()->CacheSizeClass(p, cl);
  }

  ValidateAllocatedRegion(ptr, cl);

  if (cl != 0) {
    ASSERT(!Static::pageheap()->GetDescriptor(p)->sample);
    ThreadCache* heap = GetCacheIfPresent();
    if (heap != NULL) {
      heap->Deallocate(ptr, cl);
    } else {
      // Delete directly into central cache
      tcmalloc::FL_Init(ptr);
      Static::central_cache()[cl].InsertRange(ptr, ptr, 1);
    }
  } else {
    // Make sure ptr is inside the first page of the span.
    CHECK_CONDITION(span->start == p);
    // Make sure we are not freeing interior pointers, even in release build.
    CHECK_CONDITION(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);

    SpinLockHolder h(Static::pageheap_lock());
    if (span->sample) {
      StackTrace* st = reinterpret_cast<StackTrace*>(span->objects);
      tcmalloc::DLL_Remove(span);
      Static::stacktrace_allocator()->Delete(st);
      span->objects = NULL;
    }
    Static::pageheap()->Delete(span);
  }
}

// The default "do_free" that uses the default callback.
inline void do_free(void* ptr) {
  return do_free_with_callback(ptr, &InvalidFree);
}

// NOTE: some logic here is duplicated in GetOwnership (above), for
// speed.  If you change this function, look at that one too.
inline size_t GetSizeWithCallback(const void* ptr,
                                  size_t (*invalid_getsize_fn)(const void*)) {
  if (ptr == NULL)
    return 0;
  const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
  size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
  if (cl != 0) {
    return Static::sizemap()->ByteSizeForClass(cl);
  } else {
    const Span *span = Static::pageheap()->GetDescriptor(p);
    if (span == NULL) {  // means we do not own this memory
      return (*invalid_getsize_fn)(ptr);
    } else if (span->sizeclass != 0) {
      Static::pageheap()->CacheSizeClass(p, span->sizeclass);
      return Static::sizemap()->ByteSizeForClass(span->sizeclass);
    } else {
      return span->length << kPageShift;
    }
  }
}

// This lets you call back to a given function pointer if ptr is invalid.
// It is used primarily by windows code which wants a specialized callback.
inline void* do_realloc_with_callback(
    void* old_ptr, size_t new_size,
    void (*invalid_free_fn)(void*),
    size_t (*invalid_get_size_fn)(const void*)) {
  AddRoomForMark(&new_size);
  // Get the size of the old entry
  const size_t old_size = GetSizeWithCallback(old_ptr, invalid_get_size_fn);

  // Reallocate if the new size is larger than the old size,
  // or if the new size is significantly smaller than the old size.
  // We do hysteresis to avoid resizing ping-pongs:
  //    . If we need to grow, grow to max(new_size, old_size * 1.X)
  //    . Don't shrink unless new_size < old_size * 0.Y
  // X and Y trade-off time for wasted space.  For now we do 1.25 and 0.5.
  const int lower_bound_to_grow = old_size + old_size / 4;
  const int upper_bound_to_shrink = old_size / 2;
  if ((new_size > old_size) || (new_size < upper_bound_to_shrink)) {
    // Need to reallocate.
    void* new_ptr = NULL;

    if (new_size > old_size && new_size < lower_bound_to_grow) {
      new_ptr = do_malloc_or_cpp_alloc(lower_bound_to_grow);
    }
    ExcludeMarkFromSize(&new_size);  // do_malloc will add space if needed.
    if (new_ptr == NULL) {
      // Either new_size is not a tiny increment, or last do_malloc failed.
      new_ptr = do_malloc_or_cpp_alloc(new_size);
    }
    if (new_ptr == NULL) {
      return NULL;
    }
    MallocHook::InvokeNewHook(new_ptr, new_size);
    memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
    MallocHook::InvokeDeleteHook(old_ptr);
    // We could use a variant of do_free() that leverages the fact
    // that we already know the sizeclass of old_ptr.  The benefit
    // would be small, so don't bother.
    do_free_with_callback(old_ptr, invalid_free_fn);
    return new_ptr;
  } else {
    // We still need to call hooks to report the updated size:
    MallocHook::InvokeDeleteHook(old_ptr);
    ExcludeMarkFromSize(&new_size);
    MallocHook::InvokeNewHook(old_ptr, new_size);
    return old_ptr;
  }
}

inline void* do_realloc(void* old_ptr, size_t new_size) {
  return do_realloc_with_callback(old_ptr, new_size,
                                  &InvalidFree, &InvalidGetSizeForRealloc);
}

// For use by exported routines below that want specific alignments
//
// Note: this code can be slow for alignments > 16, and can
// significantly fragment memory.  The expectation is that
// memalign/posix_memalign/valloc/pvalloc will not be invoked very
// often.  This requirement simplifies our implementation and allows
// us to tune for expected allocation patterns.
void* do_memalign(size_t align, size_t size) {
  ASSERT((align & (align - 1)) == 0);
  ASSERT(align > 0);
  // Marked in CheckedMallocResult(), which is also inside SpanToMallocResult().
  AddRoomForMark(&size);
  if (size + align < size) return NULL;         // Overflow

  // Fall back to malloc if we would already align this memory access properly.
  if (align <= AlignmentForSize(size)) {
    void* p = do_malloc(size);
    ASSERT((reinterpret_cast<uintptr_t>(p) % align) == 0);
    return p;
  }

  if (Static::pageheap() == NULL) ThreadCache::InitModule();

  // Allocate at least one byte to avoid boundary conditions below
  if (size == 0) size = 1;

  if (size <= kMaxSize && align < kPageSize) {
    // Search through acceptable size classes looking for one with
    // enough alignment.  This depends on the fact that
    // InitSizeClasses() currently produces several size classes that
    // are aligned at powers of two.  We will waste time and space if
    // we miss in the size class array, but that is deemed acceptable
    // since memalign() should be used rarely.
    int cl = Static::sizemap()->SizeClass(size);
    while (cl < kNumClasses &&
           ((Static::sizemap()->class_to_size(cl) & (align - 1)) != 0)) {
      cl++;
    }
    if (cl < kNumClasses) {
      ThreadCache* heap = ThreadCache::GetCache();
      size = Static::sizemap()->class_to_size(cl);
      return CheckedMallocResult(heap->Allocate(size, cl));
    }
  }

  // We will allocate directly from the page heap
  SpinLockHolder h(Static::pageheap_lock());

  if (align <= kPageSize) {
    // Any page-level allocation will be fine
    // TODO: We could put the rest of this page in the appropriate
    // TODO: cache but it does not seem worth it.
    Span* span = Static::pageheap()->New(tcmalloc::pages(size));
    return span == NULL ? NULL : SpanToMallocResult(span);
  }

  // Allocate extra pages and carve off an aligned portion
  const Length alloc = tcmalloc::pages(size + align);
  Span* span = Static::pageheap()->New(alloc);
  if (span == NULL) return NULL;

  // Skip starting portion so that we end up aligned
  Length skip = 0;
  while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
    skip++;
  }
  ASSERT(skip < alloc);
  if (skip > 0) {
    Span* rest = Static::pageheap()->Split(span, skip);
    Static::pageheap()->Delete(span);
    span = rest;
  }

  // Skip trailing portion that we do not need to return
  const Length needed = tcmalloc::pages(size);
  ASSERT(span->length >= needed);
  if (span->length > needed) {
    Span* trailer = Static::pageheap()->Split(span, needed);
    Static::pageheap()->Delete(trailer);
  }
  return SpanToMallocResult(span);
}

// Helpers for use by exported routines below:

inline void do_malloc_stats() {
  PrintStats(1);
}

inline int do_mallopt(int cmd, int value) {
  return 1;     // Indicates error
}

#ifdef HAVE_STRUCT_MALLINFO
inline struct mallinfo do_mallinfo() {
  TCMallocStats stats;
  ExtractStats(&stats, NULL, NULL, NULL);

  // Just some of the fields are filled in.
  struct mallinfo info;
  memset(&info, 0, sizeof(info));

  // Unfortunately, the struct contains "int" field, so some of the
  // size values will be truncated.
  info.arena     = static_cast<int>(stats.pageheap.system_bytes);
  info.fsmblks   = static_cast<int>(stats.thread_bytes
                                    + stats.central_bytes
                                    + stats.transfer_bytes);
  info.fordblks  = static_cast<int>(stats.pageheap.free_bytes +
                                    stats.pageheap.unmapped_bytes);
  info.uordblks  = static_cast<int>(stats.pageheap.system_bytes
                                    - stats.thread_bytes
                                    - stats.central_bytes
                                    - stats.transfer_bytes
                                    - stats.pageheap.free_bytes
                                    - stats.pageheap.unmapped_bytes);

  return info;
}
#endif  // HAVE_STRUCT_MALLINFO

static SpinLock set_new_handler_lock(SpinLock::LINKER_INITIALIZED);

inline void* cpp_alloc(size_t size, bool nothrow) {
  for (;;) {
    void* p = do_malloc(size);
#ifdef PREANSINEW
    return p;
#else
    if (p == NULL) {  // allocation failed
      // Get the current new handler.  NB: this function is not
      // thread-safe.  We make a feeble stab at making it so here, but
      // this lock only protects against tcmalloc interfering with
      // itself, not with other libraries calling set_new_handler.
      std::new_handler nh;
      {
        SpinLockHolder h(&set_new_handler_lock);
        nh = std::set_new_handler(0);
        (void) std::set_new_handler(nh);
      }
#if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
      if (nh) {
        // Since exceptions are disabled, we don't really know if new_handler
        // failed.  Assume it will abort if it fails.
        (*nh)();
        continue;
      }
      return 0;
#else
      // If no new_handler is established, the allocation failed.
      if (!nh) {
        if (nothrow) return 0;
        throw std::bad_alloc();
      }
      // Otherwise, try the new_handler.  If it returns, retry the
      // allocation.  If it throws std::bad_alloc, fail the allocation.
      // if it throws something else, don't interfere.
      try {
        (*nh)();
      } catch (const std::bad_alloc&) {
        if (!nothrow) throw;
        return p;
      }
#endif  // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
    } else {  // allocation success
      return p;
    }
#endif  // PREANSINEW
  }
}

void* cpp_memalign(size_t align, size_t size) {
  for (;;) {
    void* p = do_memalign(align, size);
#ifdef PREANSINEW
    return p;
#else
    if (p == NULL) {  // allocation failed
      // Get the current new handler.  NB: this function is not
      // thread-safe.  We make a feeble stab at making it so here, but
      // this lock only protects against tcmalloc interfering with
      // itself, not with other libraries calling set_new_handler.
      std::new_handler nh;
      {
        SpinLockHolder h(&set_new_handler_lock);
        nh = std::set_new_handler(0);
        (void) std::set_new_handler(nh);
      }
#if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
      if (nh) {
        // Since exceptions are disabled, we don't really know if new_handler
        // failed.  Assume it will abort if it fails.
        (*nh)();
        continue;
      }
      return 0;
#else
      // If no new_handler is established, the allocation failed.
      if (!nh)
        return 0;

      // Otherwise, try the new_handler.  If it returns, retry the
      // allocation.  If it throws std::bad_alloc, fail the allocation.
      // if it throws something else, don't interfere.
      try {
        (*nh)();
      } catch (const std::bad_alloc&) {
        return p;
      }
#endif  // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
    } else {  // allocation success
      return p;
    }
#endif  // PREANSINEW
  }
}

}  // end unnamed namespace

// As promised, the definition of this function, declared above.
size_t TCMallocImplementation::GetAllocatedSize(const void* ptr) {
  // Chromium workaround for third-party code calling tc_malloc_size(NULL), see
  // http://code.google.com/p/chromium/issues/detail?id=118087
  // Note: this is consistent with GLIBC's implementation of
  // malloc_usable_size(NULL).
  if (ptr == NULL)
    return 0;
  ASSERT(TCMallocImplementation::GetOwnership(ptr)
         != TCMallocImplementation::kNotOwned);
  return ExcludeSpaceForMark(
      GetSizeWithCallback(ptr, &InvalidGetAllocatedSize));
}

void TCMallocImplementation::MarkThreadBusy() {
  // Allocate to force the creation of a thread cache, but avoid
  // invoking any hooks.
  do_free(do_malloc(0));
}

//-------------------------------------------------------------------
// Exported routines
//-------------------------------------------------------------------

extern "C" PERFTOOLS_DLL_DECL const char* tc_version(
    int* major, int* minor, const char** patch) __THROW {
  if (major) *major = TC_VERSION_MAJOR;
  if (minor) *minor = TC_VERSION_MINOR;
  if (patch) *patch = TC_VERSION_PATCH;
  return TC_VERSION_STRING;
}

// This function behaves similarly to MSVC's _set_new_mode.
// If flag is 0 (default), calls to malloc will behave normally.
// If flag is 1, calls to malloc will behave like calls to new,
// and the std_new_handler will be invoked on failure.
// Returns the previous mode.
extern "C" PERFTOOLS_DLL_DECL int tc_set_new_mode(int flag) __THROW {
  int old_mode = tc_new_mode;
  tc_new_mode = flag;
  return old_mode;
}

#ifndef TCMALLOC_USING_DEBUGALLOCATION  // debugallocation.cc defines its own

// CAVEAT: The code structure below ensures that MallocHook methods are always
//         called from the stack frame of the invoked allocation function.
//         heap-checker.cc depends on this to start a stack trace from
//         the call to the (de)allocation function.

extern "C" PERFTOOLS_DLL_DECL void* tc_malloc(size_t size) __THROW {
  void* result = do_malloc_or_cpp_alloc(size);
  MallocHook::InvokeNewHook(result, size);
  return result;
}

extern "C" PERFTOOLS_DLL_DECL void tc_free(void* ptr) __THROW {
  MallocHook::InvokeDeleteHook(ptr);
  do_free(ptr);
}

extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t n,
                                              size_t elem_size) __THROW {
  void* result = do_calloc(n, elem_size);
  MallocHook::InvokeNewHook(result, n * elem_size);
  return result;
}

extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) __THROW {
  MallocHook::InvokeDeleteHook(ptr);
  do_free(ptr);
}

extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* old_ptr,
                                               size_t new_size) __THROW {
  if (old_ptr == NULL) {
    void* result = do_malloc_or_cpp_alloc(new_size);
    MallocHook::InvokeNewHook(result, new_size);
    return result;
  }
  if (new_size == 0) {
    MallocHook::InvokeDeleteHook(old_ptr);
    do_free(old_ptr);
    return NULL;
  }
  return do_realloc(old_ptr, new_size);
}

extern "C" PERFTOOLS_DLL_DECL void* tc_new(size_t size) {
  void* p = cpp_alloc(size, false);
  // We keep this next instruction out of cpp_alloc for a reason: when
  // it's in, and new just calls cpp_alloc, the optimizer may fold the
  // new call into cpp_alloc, which messes up our whole section-based
  // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc
  // isn't the last thing this fn calls, and prevents the folding.
  MallocHook::InvokeNewHook(p, size);
  return p;
}

extern "C" PERFTOOLS_DLL_DECL void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW {
  void* p = cpp_alloc(size, true);
  MallocHook::InvokeNewHook(p, size);
  return p;
}

extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) __THROW {
  MallocHook::InvokeDeleteHook(p);
  do_free(p);
}

// Standard C++ library implementations define and use this
// (via ::operator delete(ptr, nothrow)).
// But it's really the same as normal delete, so we just do the same thing.
extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) __THROW {
  MallocHook::InvokeDeleteHook(p);
  do_free(p);
}

extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size) {
  void* p = cpp_alloc(size, false);
  // We keep this next instruction out of cpp_alloc for a reason: when
  // it's in, and new just calls cpp_alloc, the optimizer may fold the
  // new call into cpp_alloc, which messes up our whole section-based
  // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc
  // isn't the last thing this fn calls, and prevents the folding.
  MallocHook::InvokeNewHook(p, size);
  return p;
}

extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&)
    __THROW {
  void* p = cpp_alloc(size, true);
  MallocHook::InvokeNewHook(p, size);
  return p;
}

extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) __THROW {
  MallocHook::InvokeDeleteHook(p);
  do_free(p);
}

extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) __THROW {
  MallocHook::InvokeDeleteHook(p);
  do_free(p);
}

extern "C" PERFTOOLS_DLL_DECL void* tc_memalign(size_t align,
                                                size_t size) __THROW {
  void* result = do_memalign_or_cpp_memalign(align, size);
  MallocHook::InvokeNewHook(result, size);
  return result;
}

extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign(
    void** result_ptr, size_t align, size_t size) __THROW {
  if (((align % sizeof(void*)) != 0) ||
      ((align & (align - 1)) != 0) ||
      (align == 0)) {
    return EINVAL;
  }

  void* result = do_memalign_or_cpp_memalign(align, size);
  MallocHook::InvokeNewHook(result, size);
  if (result == NULL) {
    return ENOMEM;
  } else {
    *result_ptr = result;
    return 0;
  }
}

static size_t pagesize = 0;

extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) __THROW {
  // Allocate page-aligned object of length >= size bytes
  if (pagesize == 0) pagesize = getpagesize();
  void* result = do_memalign_or_cpp_memalign(pagesize, size);
  MallocHook::InvokeNewHook(result, size);
  return result;
}

extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) __THROW {
  // Round up size to a multiple of pagesize
  if (pagesize == 0) pagesize = getpagesize();
  if (size == 0) {     // pvalloc(0) should allocate one page, according to
    size = pagesize;   // http://man.free4web.biz/man3/libmpatrol.3.html
  }
  size = (size + pagesize - 1) & ~(pagesize - 1);
  void* result = do_memalign_or_cpp_memalign(pagesize, size);
  MallocHook::InvokeNewHook(result, size);
  return result;
}

extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) __THROW {
  do_malloc_stats();
}

extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) __THROW {
  return do_mallopt(cmd, value);
}

#ifdef HAVE_STRUCT_MALLINFO
extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) __THROW {
  return do_mallinfo();
}
#endif

extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) __THROW {
  return MallocExtension::instance()->GetAllocatedSize(ptr);
}

#endif  // TCMALLOC_USING_DEBUGALLOCATION

// --- Validation implementation with an extra mark ----------------------------
// We will put a mark at the extreme end of each allocation block.  We make
// sure that we always allocate enough "extra memory" that we can fit in the
// mark, and still provide the requested usable region.  If ever that mark is
// not as expected, then we know that the user is corrupting memory beyond their
// request size, or that they have called free a second time without having
// the memory allocated (again).  This allows us to spot most double free()s,
// but some can "slip by" or confuse our logic if the caller reallocates memory
// (for a second use) before performing an evil double-free of a first
// allocation

// This code can be optimized, but for now, it is written to be most easily
// understood, and flexible (since it is evolving a bit). Potential
// optimizations include using other calculated data, such as class size, or
// allocation size, which is known in the code above, but then is recalculated
// below.  Another potential optimization would be careful manual inlining of
// code, but I *think* that the compile will probably do this for me, and I've
// been careful to avoid aliasing issues that might make a compiler back-off.

// Evolution includes experimenting with different marks, to minimize the chance
// that a mark would be misunderstood (missed corruption).  The marks are meant
// to be hashed encoding of the location, so that they can't be copied over a
// different region (by accident) without being detected (most of the time).

// Enable the following define to turn on all the TCMalloc checking.
// It will cost about 2% in performance, but it will catch double frees (most of
// the time), and will often catch allocated-buffer overrun errors.  This
// validation is only active when TCMalloc is used as the allocator.
#ifndef NDEBUG
#define TCMALLOC_VALIDATION
#endif

#if !defined(TCMALLOC_VALIDATION)

static size_t ExcludeSpaceForMark(size_t size) { return size; }
static void AddRoomForMark(size_t* size) {}
static void ExcludeMarkFromSize(size_t* new_size) {}
static void MarkAllocatedRegion(void* ptr) {}
static void ValidateAllocatedRegion(void* ptr, size_t cl) {}

#else  // TCMALLOC_VALIDATION

static void DieFromDoubleFree() {
  char* p = NULL;
  p++;
  *p += 1;  // Segv.
}

static void DieFromMemoryCorruption() {
  char* p = NULL;
  p += 3;
  *p += 3;  // Segv.
}

// We can either do byte marking, or whole word marking based on the following
// define.  char is as small as we can get, and word marking probably provides
// more than enough bits that we won't miss a corruption. Any sized integral
// type can be used, but we just define two examples.

//  #define TCMALLOC_SMALL_VALIDATION
#if defined (TCMALLOC_SMALL_VALIDATION)

typedef char MarkType;  // char saves memory... int is more complete.
static const MarkType kAllocationMarkMask = static_cast<MarkType>(0x36);

#else 

typedef int MarkType;  // char saves memory... int is more complete.
static const MarkType kAllocationMarkMask = static_cast<MarkType>(0xE1AB9536);

#endif

// TODO(jar): See if use of reference rather than pointer gets better inlining,
// or if macro is needed.  My fear is that taking address map preclude register
// allocation :-(.
inline static void AddRoomForMark(size_t* size) {
  *size += sizeof(kAllocationMarkMask);
}

inline static void ExcludeMarkFromSize(size_t* new_size) {
  *new_size -= sizeof(kAllocationMarkMask);
}

inline static size_t ExcludeSpaceForMark(size_t size) {
  return size - sizeof(kAllocationMarkMask);  // Lie about size when asked.
}

inline static MarkType* GetMarkLocation(void* ptr) {
  size_t class_size = GetSizeWithCallback(ptr, &InvalidGetAllocatedSize);
  ASSERT(class_size % sizeof(kAllocationMarkMask) == 0);
  size_t last_index = (class_size / sizeof(kAllocationMarkMask)) - 1;
  return static_cast<MarkType*>(ptr) + last_index;
}

// We hash in the mark location plus the pointer so that we effectively mix in
// the size of the block.  This means that if a span is used for different sizes
// that the mark will be different. It would be good to hash in the size (which
// we effectively get by using both mark location and pointer), but even better
// would be to also include the class, as it concisely contains the entropy
// found in the size (when we don't have large allocation), and there is less
// risk of losing those bits to truncation. It would probably be good to combine
// the high bits of size (capturing info about large blocks) with the class
// (which is a 6 bit number).
inline static MarkType GetMarkValue(void* ptr, MarkType* mark) {
  void* ptr2 = static_cast<void*>(mark);
  size_t offset1 = static_cast<char*>(ptr) - static_cast<char*>(NULL);
  size_t offset2 = static_cast<char*>(ptr2) - static_cast<char*>(NULL);
  static const int kInvariantBits = 2;
  ASSERT((offset1 >> kInvariantBits) << kInvariantBits == offset1);
  // Note: low bits of both offsets are invariants due to alignment.  High bits
  // of both offsets are the same (unless we have a large allocation).  Avoid
  // XORing high bits together, as they will cancel for most small allocations.

  MarkType ret = kAllocationMarkMask;
  // Using a little shift, we can safely XOR together both offsets.
  ret ^= static_cast<MarkType>(offset1 >> kInvariantBits) ^
         static_cast<MarkType>(offset2);
  if (sizeof(ret) == 1) {
    // Try to bring some high level bits into the mix.
    ret += static_cast<MarkType>(offset1 >> 8) ^
           static_cast<MarkType>(offset1 >> 16) ^
           static_cast<MarkType>(offset1 >> 24) ;
  }
  // Hash in high bits on a 64 bit architecture.
  if (sizeof(size_t) == 8 && sizeof(ret) == 4)
    ret += offset1 >> 16;
  if (ret == 0)
    ret = kAllocationMarkMask;  // Avoid common pattern of all zeros.
  return ret;
}

// TODO(jar): Use the passed in TCmalloc Class Index to calculate mark location
// faster.  The current implementation calls general functions, which have to
// recalculate this in order to get the Class Size.  This is a slow and wasteful
// recomputation... but it is much more readable this way (for now).
static void ValidateAllocatedRegion(void* ptr, size_t cl) {
  if (ptr == NULL) return;
  MarkType* mark = GetMarkLocation(ptr);
  MarkType allocated_mark = GetMarkValue(ptr, mark);
  MarkType current_mark = *mark;

  if (current_mark == ~allocated_mark)
    DieFromDoubleFree();
  if (current_mark != allocated_mark)
    DieFromMemoryCorruption();
#ifndef NDEBUG
  // In debug mode, copy the mark into all the free'd region.
  size_t class_size = static_cast<size_t>(reinterpret_cast<char*>(mark) -
                                          reinterpret_cast<char*>(ptr));
  memset(ptr, static_cast<char>(0x36), class_size);
#endif
  *mark = ~allocated_mark;  //  Distinctively not allocated.
}

static void MarkAllocatedRegion(void* ptr) {
  if (ptr == NULL) return;
  MarkType* mark = GetMarkLocation(ptr);
  *mark = GetMarkValue(ptr, mark);
}

#endif  // TCMALLOC_VALIDATION