1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/memory/scoped_ptr.h"
#include "base/strings/string_number_conversions.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/accessibility/ax_node.h"
#include "ui/accessibility/ax_serializable_tree.h"
#include "ui/accessibility/ax_tree.h"
#include "ui/accessibility/ax_tree_serializer.h"
namespace ui {
namespace {
// A function to turn a tree into a string, capturing only the node ids
// and their relationship to one another.
//
// The string format is kind of like an S-expression, with each expression
// being either a node id, or a node id followed by a subexpression
// representing its children.
//
// Examples:
//
// (1) is a tree with a single node with id 1.
// (1 (2 3)) is a tree with 1 as the root, and 2 and 3 as its children.
// (1 (2 (3))) has 1 as the root, 2 as its child, and then 3 as the child of 2.
void TreeToStringHelper(const AXNode* node, std::string* out_result) {
*out_result += base::IntToString(node->id());
if (node->child_count() != 0) {
*out_result += " (";
for (int i = 0; i < node->child_count(); ++i) {
if (i != 0)
*out_result += " ";
TreeToStringHelper(node->ChildAtIndex(i), out_result);
}
*out_result += ")";
}
}
std::string TreeToString(const AXTree& tree) {
std::string result;
TreeToStringHelper(tree.GetRoot(), &result);
return "(" + result + ")";
}
} // anonymous namespace
// A class to create all possible trees with <n> nodes and the ids [1...n].
//
// There are two parts to the algorithm:
//
// The tree structure is formed as follows: without loss of generality,
// the first node becomes the root and the second node becomes its
// child. Thereafter, choose every possible parent for every other node.
//
// So for node i in (3...n), there are (i - 1) possible choices for its
// parent, for a total of (n-1)! (n minus 1 factorial) possible trees.
//
// The second part is the assignment of ids to the nodes in the tree.
// There are exactly n! (n factorial) permutations of the sequence 1...n,
// and each of these is assigned to every node in every possible tree.
//
// The total number of trees returned for a given <n>, then, is
// n! * (n-1)!
//
// n = 2: 2 trees
// n = 3: 12 trees
// n = 4: 144 trees
// n = 5: 2880 trees
//
// This grows really fast! Luckily it's very unlikely that there'd be
// bugs that affect trees with >4 nodes that wouldn't affect a smaller tree
// too.
class TreeGenerator {
public:
TreeGenerator(int node_count)
: node_count_(node_count),
unique_tree_count_(1) {
// (n-1)! for the possible trees.
for (int i = 2; i < node_count_; i++)
unique_tree_count_ *= i;
// n! for the permutations of ids.
for (int i = 2; i <= node_count_; i++)
unique_tree_count_ *= i;
}
int UniqueTreeCount() {
return unique_tree_count_;
}
void BuildUniqueTree(int tree_index, AXTree* out_tree) {
std::vector<int> indices;
std::vector<int> permuted;
CHECK(tree_index <= unique_tree_count_);
// Use the first few bits of |tree_index| to permute
// the indices.
for (int i = 0; i < node_count_; i++)
indices.push_back(i + 1);
for (int i = 0; i < node_count_; i++) {
int p = (node_count_ - i);
int index = tree_index % p;
tree_index /= p;
permuted.push_back(indices[index]);
indices.erase(indices.begin() + index);
}
// Build an AXTreeUpdate. The first two nodes of the tree always
// go in the same place.
AXTreeUpdate update;
update.nodes.resize(node_count_);
update.nodes[0].id = permuted[0];
update.nodes[0].role = AX_ROLE_ROOT_WEB_AREA;
update.nodes[0].child_ids.push_back(permuted[1]);
update.nodes[1].id = permuted[1];
// The remaining nodes are assigned based on their parent
// selected from the next bits from |tree_index|.
for (int i = 2; i < node_count_; i++) {
update.nodes[i].id = permuted[i];
int parent_index = (tree_index % i);
tree_index /= i;
update.nodes[parent_index].child_ids.push_back(permuted[i]);
}
// Unserialize the tree update into the destination tree.
CHECK(out_tree->Unserialize(update));
}
private:
int node_count_;
int unique_tree_count_;
};
// Test the TreeGenerator class by building all possible trees with
// 3 nodes and the ids [1...3].
TEST(AXGeneratedTreeTest, TestTreeGenerator) {
int tree_size = 3;
TreeGenerator generator(tree_size);
const char* EXPECTED_TREES[] = {
"(1 (2 3))",
"(2 (1 3))",
"(3 (1 2))",
"(1 (3 2))",
"(2 (3 1))",
"(3 (2 1))",
"(1 (2 (3)))",
"(2 (1 (3)))",
"(3 (1 (2)))",
"(1 (3 (2)))",
"(2 (3 (1)))",
"(3 (2 (1)))",
};
int n = generator.UniqueTreeCount();
ASSERT_EQ(static_cast<int>(arraysize(EXPECTED_TREES)), n);
for (int i = 0; i < n; i++) {
AXTree tree;
generator.BuildUniqueTree(i, &tree);
std::string str = TreeToString(tree);
EXPECT_EQ(EXPECTED_TREES[i], str);
}
}
// Test mutating every possible tree with <n> nodes to every other possible
// tree with <n> nodes, where <n> is 4 in release mode and 3 in debug mode
// (for speed). For each possible combination of trees, we also vary which
// node we serialize first.
//
// For every possible scenario, we check that the AXTreeUpdate is valid,
// that the destination tree can unserialize it and create a valid tree,
// and that after updating all nodes the resulting tree now matches the
// intended tree.
TEST(AXGeneratedTreeTest, SerializeGeneratedTrees) {
// Do a more exhaustive test in release mode. If you're modifying
// the algorithm you may want to try even larger tree sizes if you
// can afford the time.
#ifdef NDEBUG
int tree_size = 4;
#else
LOG(WARNING) << "Debug build, only testing trees with 3 nodes and not 4.";
int tree_size = 3;
#endif
TreeGenerator generator(tree_size);
int n = generator.UniqueTreeCount();
for (int i = 0; i < n; i++) {
// Build the first tree, tree0.
AXSerializableTree tree0;
generator.BuildUniqueTree(i, &tree0);
SCOPED_TRACE("tree0 is " + TreeToString(tree0));
for (int j = 0; j < n; j++) {
// Build the second tree, tree1.
AXSerializableTree tree1;
generator.BuildUniqueTree(j, &tree1);
SCOPED_TRACE("tree1 is " + TreeToString(tree0));
// Now iterate over which node to update first, |k|.
for (int k = 0; k < tree_size; k++) {
SCOPED_TRACE("i=" + base::IntToString(i) +
" j=" + base::IntToString(j) +
" k=" + base::IntToString(k));
// Start by serializing tree0 and unserializing it into a new
// empty tree |dst_tree|.
scoped_ptr<AXTreeSource<AXNode> > tree0_source(
tree0.CreateTreeSource());
AXTreeSerializer<AXNode> serializer(tree0_source.get());
AXTreeUpdate update0;
serializer.SerializeChanges(tree0.GetRoot(), &update0);
AXTree dst_tree;
ASSERT_TRUE(dst_tree.Unserialize(update0));
// At this point, |dst_tree| should now be identical to |tree0|.
EXPECT_EQ(TreeToString(tree0), TreeToString(dst_tree));
// Next, pretend that tree0 turned into tree1, and serialize
// a sequence of updates to |dst_tree| to match.
scoped_ptr<AXTreeSource<AXNode> > tree1_source(
tree1.CreateTreeSource());
serializer.ChangeTreeSourceForTesting(tree1_source.get());
for (int k_index = 0; k_index < tree_size; ++k_index) {
int id = 1 + (k + k_index) % tree_size;
AXTreeUpdate update;
serializer.SerializeChanges(tree1.GetFromId(id), &update);
ASSERT_TRUE(dst_tree.Unserialize(update));
}
// After the sequence of updates, |dst_tree| should now be
// identical to |tree1|.
EXPECT_EQ(TreeToString(tree1), TreeToString(dst_tree));
}
}
}
}
} // namespace ui
|