summaryrefslogtreecommitdiffstats
path: root/ui/gfx/color_analysis.cc
blob: 88785197cbadc19690c49491f685d281cd34b34a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/gfx/color_analysis.h"

#include <algorithm>
#include <vector>

#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkUnPreMultiply.h"
#include "ui/gfx/codec/png_codec.h"

namespace {

// RGBA KMean Constants
const uint32_t kNumberOfClusters = 4;
const int kNumberOfIterations = 50;
const uint32_t kMaxBrightness = 665;
const uint32_t kMinDarkness = 100;

// Background Color Modification Constants
const SkColor kDefaultBgColor = SK_ColorWHITE;

// Support class to hold information about each cluster of pixel data in
// the KMean algorithm. While this class does not contain all of the points
// that exist in the cluster, it keeps track of the aggregate sum so it can
// compute the new center appropriately.
class KMeanCluster {
 public:
  KMeanCluster() {
    Reset();
  }

  void Reset() {
    centroid[0] = centroid[1] = centroid[2] = 0;
    aggregate[0] = aggregate[1] = aggregate[2] = 0;
    counter = 0;
    weight = 0;
  }

  inline void SetCentroid(uint8_t r, uint8_t g, uint8_t b) {
    centroid[0] = r;
    centroid[1] = g;
    centroid[2] = b;
  }

  inline void GetCentroid(uint8_t* r, uint8_t* g, uint8_t* b) {
    *r = centroid[0];
    *g = centroid[1];
    *b = centroid[2];
  }

  inline bool IsAtCentroid(uint8_t r, uint8_t g, uint8_t b) {
    return r == centroid[0] && g == centroid[1] && b == centroid[2];
  }

  // Recomputes the centroid of the cluster based on the aggregate data. The
  // number of points used to calculate this center is stored for weighting
  // purposes. The aggregate and counter are then cleared to be ready for the
  // next iteration.
  inline void RecomputeCentroid() {
    if (counter > 0) {
      centroid[0] = aggregate[0] / counter;
      centroid[1] = aggregate[1] / counter;
      centroid[2] = aggregate[2] / counter;

      aggregate[0] = aggregate[1] = aggregate[2] = 0;
      weight = counter;
      counter = 0;
    }
  }

  inline void AddPoint(uint8_t r, uint8_t g, uint8_t b) {
    aggregate[0] += r;
    aggregate[1] += g;
    aggregate[2] += b;
    ++counter;
  }

  // Just returns the distance^2. Since we are comparing relative distances
  // there is no need to perform the expensive sqrt() operation.
  inline uint32_t GetDistanceSqr(uint8_t r, uint8_t g, uint8_t b) {
    return (r - centroid[0]) * (r - centroid[0]) +
           (g - centroid[1]) * (g - centroid[1]) +
           (b - centroid[2]) * (b - centroid[2]);
  }

  // In order to determine if we have hit convergence or not we need to see
  // if the centroid of the cluster has moved. This determines whether or
  // not the centroid is the same as the aggregate sum of points that will be
  // used to generate the next centroid.
  inline bool CompareCentroidWithAggregate() {
    if (counter == 0)
      return false;

    return aggregate[0] / counter == centroid[0] &&
           aggregate[1] / counter == centroid[1] &&
           aggregate[2] / counter == centroid[2];
  }

  // Returns the previous counter, which is used to determine the weight
  // of the cluster for sorting.
  inline uint32_t GetWeight() const {
    return weight;
  }

  static bool SortKMeanClusterByWeight(const KMeanCluster& a,
                                       const KMeanCluster& b) {
    return a.GetWeight() > b.GetWeight();
  }

 private:
  uint8_t centroid[3];

  // Holds the sum of all the points that make up this cluster. Used to
  // generate the next centroid as well as to check for convergence.
  uint32_t aggregate[3];
  uint32_t counter;

  // The weight of the cluster, determined by how many points were used
  // to generate the previous centroid.
  uint32_t weight;
};

// Un-premultiplies each pixel in |bitmap| into an output |buffer|. Requires
// approximately 10 microseconds for a 16x16 icon on an Intel Core i5.
void UnPreMultiply(const SkBitmap& bitmap, uint32_t* buffer, int buffer_size) {
  SkAutoLockPixels auto_lock(bitmap);
  uint32_t* in = static_cast<uint32_t*>(bitmap.getPixels());
  uint32_t* out = buffer;
  int pixel_count = std::min(bitmap.width() * bitmap.height(), buffer_size);
  for (int i = 0; i < pixel_count; ++i)
    *out++ = SkUnPreMultiply::PMColorToColor(*in++);
}

} // namespace

namespace color_utils {

KMeanImageSampler::KMeanImageSampler() {
}

KMeanImageSampler::~KMeanImageSampler() {
}

GridSampler::GridSampler() : calls_(0) {
}

GridSampler::~GridSampler() {
}

int GridSampler::GetSample(int width, int height) {
  // Hand-drawn bitmaps often have special outlines or feathering at the edges.
  // Start our sampling inset from the top and left edges. For example, a 10x10
  // image with 4 clusters would be sampled like this:
  // ..........
  // .0.4.8....
  // ..........
  // .1.5.9....
  // ..........
  // .2.6......
  // ..........
  // .3.7......
  // ..........
  const int kPadX = 1;
  const int kPadY = 1;
  int x = kPadX +
      (calls_ / kNumberOfClusters) * ((width - 2 * kPadX) / kNumberOfClusters);
  int y = kPadY +
      (calls_ % kNumberOfClusters) * ((height - 2 * kPadY) / kNumberOfClusters);
  int index = x + (y * width);
  ++calls_;
  return index % (width * height);
}

SkColor FindClosestColor(const uint8_t* image,
                         int width,
                         int height,
                         SkColor color) {
  uint8_t in_r = SkColorGetR(color);
  uint8_t in_g = SkColorGetG(color);
  uint8_t in_b = SkColorGetB(color);
  // Search using distance-squared to avoid expensive sqrt() operations.
  int best_distance_squared = kint32max;
  SkColor best_color = color;
  const uint8_t* byte = image;
  for (int i = 0; i < width * height; ++i) {
    uint8_t b = *(byte++);
    uint8_t g = *(byte++);
    uint8_t r = *(byte++);
    uint8_t a = *(byte++);
    // Ignore fully transparent pixels.
    if (a == 0)
      continue;
    int distance_squared =
        (in_b - b) * (in_b - b) +
        (in_g - g) * (in_g - g) +
        (in_r - r) * (in_r - r);
    if (distance_squared < best_distance_squared) {
      best_distance_squared = distance_squared;
      best_color = SkColorSetRGB(r, g, b);
    }
  }
  return best_color;
}

// For a 16x16 icon on an Intel Core i5 this function takes approximately
// 0.5 ms to run.
// TODO(port): This code assumes the CPU architecture is little-endian.
SkColor CalculateKMeanColorOfBuffer(uint8_t* decoded_data,
                                    int img_width,
                                    int img_height,
                                    uint32_t darkness_limit,
                                    uint32_t brightness_limit,
                                    KMeanImageSampler* sampler) {
  SkColor color = kDefaultBgColor;
  if (img_width > 0 && img_height > 0) {
    std::vector<KMeanCluster> clusters;
    clusters.resize(kNumberOfClusters, KMeanCluster());

    // Pick a starting point for each cluster
    std::vector<KMeanCluster>::iterator cluster = clusters.begin();
    while (cluster != clusters.end()) {
      // Try up to 10 times to find a unique color. If no unique color can be
      // found, destroy this cluster.
      bool color_unique = false;
      for (int i = 0; i < 10; ++i) {
        int pixel_pos = sampler->GetSample(img_width, img_height) %
            (img_width * img_height);

        uint8_t b = decoded_data[pixel_pos * 4];
        uint8_t g = decoded_data[pixel_pos * 4 + 1];
        uint8_t r = decoded_data[pixel_pos * 4 + 2];
        uint8_t a = decoded_data[pixel_pos * 4 + 3];
        // Skip fully transparent pixels as they usually contain black in their
        // RGB channels but do not contribute to the visual image.
        if (a == 0)
          continue;

        // Loop through the previous clusters and check to see if we have seen
        // this color before.
        color_unique = true;
        for (std::vector<KMeanCluster>::iterator
            cluster_check = clusters.begin();
            cluster_check != cluster; ++cluster_check) {
          if (cluster_check->IsAtCentroid(r, g, b)) {
            color_unique = false;
            break;
          }
        }

        // If we have a unique color set the center of the cluster to
        // that color.
        if (color_unique) {
          cluster->SetCentroid(r, g, b);
          break;
        }
      }

      // If we don't have a unique color erase this cluster.
      if (!color_unique) {
        cluster = clusters.erase(cluster);
      } else {
        // Have to increment the iterator here, otherwise the increment in the
        // for loop will skip a cluster due to the erase if the color wasn't
        // unique.
        ++cluster;
      }
    }

    // If all pixels in the image are transparent we will have no clusters.
    if (clusters.empty())
      return color;

    bool convergence = false;
    for (int iteration = 0;
        iteration < kNumberOfIterations && !convergence;
        ++iteration) {

      // Loop through each pixel so we can place it in the appropriate cluster.
      uint8_t* pixel = decoded_data;
      uint8_t* decoded_data_end = decoded_data + (img_width * img_height * 4);
      while (pixel < decoded_data_end) {
        uint8_t b = *(pixel++);
        uint8_t g = *(pixel++);
        uint8_t r = *(pixel++);
        uint8_t a = *(pixel++);
        // Skip transparent pixels, see above.
        if (a == 0)
          continue;

        uint32_t distance_sqr_to_closest_cluster = UINT_MAX;
        std::vector<KMeanCluster>::iterator closest_cluster = clusters.begin();

        // Figure out which cluster this color is closest to in RGB space.
        for (std::vector<KMeanCluster>::iterator cluster = clusters.begin();
            cluster != clusters.end(); ++cluster) {
          uint32_t distance_sqr = cluster->GetDistanceSqr(r, g, b);

          if (distance_sqr < distance_sqr_to_closest_cluster) {
            distance_sqr_to_closest_cluster = distance_sqr;
            closest_cluster = cluster;
          }
        }

        closest_cluster->AddPoint(r, g, b);
      }

      // Calculate the new cluster centers and see if we've converged or not.
      convergence = true;
      for (std::vector<KMeanCluster>::iterator cluster = clusters.begin();
          cluster != clusters.end(); ++cluster) {
        convergence &= cluster->CompareCentroidWithAggregate();

        cluster->RecomputeCentroid();
      }
    }

    // Sort the clusters by population so we can tell what the most popular
    // color is.
    std::sort(clusters.begin(), clusters.end(),
              KMeanCluster::SortKMeanClusterByWeight);

    // Loop through the clusters to figure out which cluster has an appropriate
    // color. Skip any that are too bright/dark and go in order of weight.
    for (std::vector<KMeanCluster>::iterator cluster = clusters.begin();
        cluster != clusters.end(); ++cluster) {
      uint8_t r, g, b;
      cluster->GetCentroid(&r, &g, &b);
      // Sum the RGB components to determine if the color is too bright or too
      // dark.
      // TODO (dtrainor): Look into using HSV here instead. This approximation
      // might be fine though.
      uint32_t summed_color = r + g + b;

      if (summed_color < brightness_limit && summed_color > darkness_limit) {
        // If we found a valid color just set it and break. We don't want to
        // check the other ones.
        color = SkColorSetARGB(0xFF, r, g, b);
        break;
      } else if (cluster == clusters.begin()) {
        // We haven't found a valid color, but we are at the first color so
        // set the color anyway to make sure we at least have a value here.
        color = SkColorSetARGB(0xFF, r, g, b);
      }
    }
  }

  // Find a color that actually appears in the image (the K-mean cluster center
  // will not usually be a color that appears in the image).
  return FindClosestColor(decoded_data, img_width, img_height, color);
}

SkColor CalculateKMeanColorOfPNG(scoped_refptr<base::RefCountedMemory> png,
                                 uint32_t darkness_limit,
                                 uint32_t brightness_limit,
                                 KMeanImageSampler* sampler) {
  int img_width = 0;
  int img_height = 0;
  std::vector<uint8_t> decoded_data;
  SkColor color = kDefaultBgColor;

  if (png.get() &&
      png->size() &&
      gfx::PNGCodec::Decode(png->front(),
                            png->size(),
                            gfx::PNGCodec::FORMAT_BGRA,
                            &decoded_data,
                            &img_width,
                            &img_height)) {
    return CalculateKMeanColorOfBuffer(&decoded_data[0],
                                       img_width,
                                       img_height,
                                       darkness_limit,
                                       brightness_limit,
                                       sampler);
  }
  return color;
}

SkColor CalculateKMeanColorOfBitmap(const SkBitmap& bitmap) {
  // SkBitmap uses pre-multiplied alpha but the KMean clustering function
  // above uses non-pre-multiplied alpha. Transform the bitmap before we
  // analyze it because the function reads each pixel multiple times.
  int pixel_count = bitmap.width() * bitmap.height();
  scoped_ptr<uint32_t[]> image(new uint32_t[pixel_count]);
  UnPreMultiply(bitmap, image.get(), pixel_count);

  GridSampler sampler;
  SkColor color = CalculateKMeanColorOfBuffer(
      reinterpret_cast<uint8_t*>(image.get()),
      bitmap.width(),
      bitmap.height(),
      kMinDarkness,
      kMaxBrightness,
      &sampler);
  return color;
}

gfx::Matrix3F ComputeColorCovariance(const SkBitmap& bitmap) {
  // First need basic stats to normalize each channel separately.
  SkAutoLockPixels bitmap_lock(bitmap);
  gfx::Matrix3F covariance = gfx::Matrix3F::Zeros();
  if (!bitmap.getPixels())
    return covariance;

  // Assume ARGB_8888 format.
  DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config);

  int64_t r_sum = 0;
  int64_t g_sum = 0;
  int64_t b_sum = 0;
  int64_t rr_sum = 0;
  int64_t gg_sum = 0;
  int64_t bb_sum = 0;
  int64_t rg_sum = 0;
  int64_t rb_sum = 0;
  int64_t gb_sum = 0;

  for (int y = 0; y < bitmap.height(); ++y) {
    SkPMColor* current_color = static_cast<uint32_t*>(bitmap.getAddr32(0, y));
    for (int x = 0; x < bitmap.width(); ++x, ++current_color) {
      SkColor c = SkUnPreMultiply::PMColorToColor(*current_color);
      SkColor r = SkColorGetR(c);
      SkColor g = SkColorGetG(c);
      SkColor b = SkColorGetB(c);

      r_sum += r;
      g_sum += g;
      b_sum += b;
      rr_sum += r * r;
      gg_sum += g * g;
      bb_sum += b * b;
      rg_sum += r * g;
      rb_sum += r * b;
      gb_sum += g * b;
    }
  }

  // Covariance (not normalized) is E(X*X.t) - m * m.t and this is how it
  // is calculated below.
  // Each row below represents a row of the matrix describing (co)variances
  // of R, G and B channels with (R, G, B)
  int pixel_n = bitmap.width() * bitmap.height();
  covariance.set(
      (static_cast<double>(rr_sum) / pixel_n -
       static_cast<double>(r_sum * r_sum) / pixel_n / pixel_n),
      (static_cast<double>(rg_sum) / pixel_n -
       static_cast<double>(r_sum * g_sum) / pixel_n / pixel_n),
      (static_cast<double>(rb_sum) / pixel_n -
       static_cast<double>(r_sum * b_sum) / pixel_n / pixel_n),
      (static_cast<double>(rg_sum) / pixel_n -
       static_cast<double>(r_sum * g_sum) / pixel_n / pixel_n),
      (static_cast<double>(gg_sum) / pixel_n -
       static_cast<double>(g_sum * g_sum) / pixel_n / pixel_n),
      (static_cast<double>(gb_sum) / pixel_n -
       static_cast<double>(g_sum * b_sum) / pixel_n / pixel_n),
      (static_cast<double>(rb_sum) / pixel_n -
       static_cast<double>(r_sum * b_sum) / pixel_n / pixel_n),
      (static_cast<double>(gb_sum) / pixel_n -
       static_cast<double>(g_sum * b_sum) / pixel_n / pixel_n),
      (static_cast<double>(bb_sum) / pixel_n -
       static_cast<double>(b_sum * b_sum) / pixel_n / pixel_n));
  return covariance;
}

}  // color_utils