1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef UI_GFX_MATRIX3_F_H_
#define UI_GFX_MATRIX3_F_H_
#include "base/logging.h"
#include "ui/gfx/vector3d_f.h"
namespace gfx {
class UI_EXPORT Matrix3F {
public:
~Matrix3F();
static Matrix3F Zeros();
static Matrix3F Ones();
static Matrix3F Identity();
static Matrix3F FromOuterProduct(const Vector3dF& a, const Vector3dF& bt);
bool IsEqual(const Matrix3F& rhs) const;
// Element-wise comparison with given precision.
bool IsNear(const Matrix3F& rhs, float precision) const;
float get(int i, int j) const {
return data_[MatrixToArrayCoords(i, j)];
}
void set(int i, int j, float v) {
data_[MatrixToArrayCoords(i, j)] = v;
}
void set(float m00, float m01, float m02,
float m10, float m11, float m12,
float m20, float m21, float m22) {
data_[0] = m00;
data_[1] = m01;
data_[2] = m02;
data_[3] = m10;
data_[4] = m11;
data_[5] = m12;
data_[6] = m20;
data_[7] = m21;
data_[8] = m22;
}
Vector3dF get_column(int i) const {
return Vector3dF(
data_[MatrixToArrayCoords(0, i)],
data_[MatrixToArrayCoords(1, i)],
data_[MatrixToArrayCoords(2, i)]);
}
void set_column(int i, const Vector3dF& c) {
data_[MatrixToArrayCoords(0, i)] = c.x();
data_[MatrixToArrayCoords(1, i)] = c.y();
data_[MatrixToArrayCoords(2, i)] = c.z();
}
// Returns an inverse of this if the matrix is non-singular, zero (== Zero())
// otherwise.
Matrix3F Inverse() const;
// Value of the determinant of the matrix.
float Determinant() const;
// Trace (sum of diagonal elements) of the matrix.
float Trace() const {
return data_[MatrixToArrayCoords(0, 0)] +
data_[MatrixToArrayCoords(1, 1)] +
data_[MatrixToArrayCoords(2, 2)];
}
// Compute eigenvalues and (optionally) normalized eigenvectors of
// a positive defnite matrix *this. Eigenvectors are computed only if
// non-null |eigenvectors| matrix is passed. If it is NULL, the routine
// will not attempt to compute eigenvectors but will still return eigenvalues
// if they can be computed.
// If eigenvalues cannot be computed (the matrix does not meet constraints)
// the 0-vector is returned. Note that to retrieve eigenvalues, the matrix
// only needs to be symmetric while eigenvectors require it to be
// positive-definite. Passing a non-positive definite matrix will result in
// NaNs in vectors which cannot be computed.
// Eigenvectors are placed as column in |eigenvectors| in order corresponding
// to eigenvalues.
Vector3dF SolveEigenproblem(Matrix3F* eigenvectors) const;
private:
Matrix3F(); // Uninitialized default.
static int MatrixToArrayCoords(int i, int j) {
DCHECK(i >= 0 && i < 3);
DCHECK(j >= 0 && j < 3);
return i * 3 + j;
}
float data_[9];
};
inline bool operator==(const Matrix3F& lhs, const Matrix3F& rhs) {
return lhs.IsEqual(rhs);
}
} // namespace gfx
#endif // UI_GFX_MATRIX3_F_H_
|