1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/quad_f.h"
#include <limits>
#include "base/strings/stringprintf.h"
namespace gfx {
void QuadF::operator=(const RectF& rect) {
p1_ = PointF(rect.x(), rect.y());
p2_ = PointF(rect.right(), rect.y());
p3_ = PointF(rect.right(), rect.bottom());
p4_ = PointF(rect.x(), rect.bottom());
}
std::string QuadF::ToString() const {
return base::StringPrintf("%s;%s;%s;%s",
p1_.ToString().c_str(),
p2_.ToString().c_str(),
p3_.ToString().c_str(),
p4_.ToString().c_str());
}
static inline bool WithinEpsilon(float a, float b) {
return std::abs(a - b) < std::numeric_limits<float>::epsilon();
}
bool QuadF::IsRectilinear() const {
return
(WithinEpsilon(p1_.x(), p2_.x()) && WithinEpsilon(p2_.y(), p3_.y()) &&
WithinEpsilon(p3_.x(), p4_.x()) && WithinEpsilon(p4_.y(), p1_.y())) ||
(WithinEpsilon(p1_.y(), p2_.y()) && WithinEpsilon(p2_.x(), p3_.x()) &&
WithinEpsilon(p3_.y(), p4_.y()) && WithinEpsilon(p4_.x(), p1_.x()));
}
bool QuadF::IsCounterClockwise() const {
// This math computes the signed area of the quad. Positive area
// indicates the quad is clockwise; negative area indicates the quad is
// counter-clockwise. Note carefully: this is backwards from conventional
// math because our geometric space uses screen coordiantes with y-axis
// pointing downards.
// Reference: http://mathworld.wolfram.com/PolygonArea.html
// Up-cast to double so this cannot overflow.
double determinant1 = static_cast<double>(p1_.x()) * p2_.y()
- static_cast<double>(p2_.x()) * p1_.y();
double determinant2 = static_cast<double>(p2_.x()) * p3_.y()
- static_cast<double>(p3_.x()) * p2_.y();
double determinant3 = static_cast<double>(p3_.x()) * p4_.y()
- static_cast<double>(p4_.x()) * p3_.y();
double determinant4 = static_cast<double>(p4_.x()) * p1_.y()
- static_cast<double>(p1_.x()) * p4_.y();
return determinant1 + determinant2 + determinant3 + determinant4 < 0;
}
static inline bool PointIsInTriangle(const PointF& point,
const PointF& r1,
const PointF& r2,
const PointF& r3) {
// Compute the barycentric coordinates of |point| relative to the triangle
// (r1, r2, r3). This algorithm comes from Christer Ericson's Real-Time
// Collision Detection.
Vector2dF v0 = r2 - r1;
Vector2dF v1 = r3 - r1;
Vector2dF v2 = point - r1;
double dot00 = DotProduct(v0, v0);
double dot01 = DotProduct(v0, v1);
double dot11 = DotProduct(v1, v1);
double dot20 = DotProduct(v2, v0);
double dot21 = DotProduct(v2, v1);
double denom = dot00 * dot11 - dot01 * dot01;
double v = (dot11 * dot20 - dot01 * dot21) / denom;
double w = (dot00 * dot21 - dot01 * dot20) / denom;
double u = 1 - v - w;
// Use the barycentric coordinates to test if |point| is inside the
// triangle (r1, r2, r2).
return (v >= 0) && (w >= 0) && (u >= 0);
}
bool QuadF::Contains(const PointF& point) const {
return PointIsInTriangle(point, p1_, p2_, p3_)
|| PointIsInTriangle(point, p1_, p3_, p4_);
}
void QuadF::Scale(float x_scale, float y_scale) {
p1_.Scale(x_scale, y_scale);
p2_.Scale(x_scale, y_scale);
p3_.Scale(x_scale, y_scale);
p4_.Scale(x_scale, y_scale);
}
void QuadF::operator+=(const Vector2dF& rhs) {
p1_ += rhs;
p2_ += rhs;
p3_ += rhs;
p4_ += rhs;
}
void QuadF::operator-=(const Vector2dF& rhs) {
p1_ -= rhs;
p2_ -= rhs;
p3_ -= rhs;
p4_ -= rhs;
}
QuadF operator+(const QuadF& lhs, const Vector2dF& rhs) {
QuadF result = lhs;
result += rhs;
return result;
}
QuadF operator-(const QuadF& lhs, const Vector2dF& rhs) {
QuadF result = lhs;
result -= rhs;
return result;
}
} // namespace gfx
|