1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// MSVC++ requires this to be set before any other includes to get M_PI.
#define _USE_MATH_DEFINES
#include "ui/gfx/transform.h"
#include <cmath>
#include "base/logging.h"
#include "base/strings/stringprintf.h"
#include "ui/gfx/box_f.h"
#include "ui/gfx/point.h"
#include "ui/gfx/point3_f.h"
#include "ui/gfx/rect.h"
#include "ui/gfx/safe_integer_conversions.h"
#include "ui/gfx/skia_util.h"
#include "ui/gfx/transform_util.h"
#include "ui/gfx/vector3d_f.h"
namespace gfx {
namespace {
// Taken from SkMatrix44.
const SkMScalar kEpsilon = 1e-8f;
SkMScalar TanDegrees(double degrees) {
double radians = degrees * M_PI / 180;
return SkDoubleToMScalar(std::tan(radians));
}
inline bool ApproximatelyZero(SkMScalar x, SkMScalar tolerance) {
return std::abs(x) <= tolerance;
}
inline bool ApproximatelyOne(SkMScalar x, SkMScalar tolerance) {
return std::abs(x - SkDoubleToMScalar(1.0)) <= tolerance;
}
} // namespace
Transform::Transform(SkMScalar col1row1,
SkMScalar col2row1,
SkMScalar col3row1,
SkMScalar col4row1,
SkMScalar col1row2,
SkMScalar col2row2,
SkMScalar col3row2,
SkMScalar col4row2,
SkMScalar col1row3,
SkMScalar col2row3,
SkMScalar col3row3,
SkMScalar col4row3,
SkMScalar col1row4,
SkMScalar col2row4,
SkMScalar col3row4,
SkMScalar col4row4)
: matrix_(SkMatrix44::kUninitialized_Constructor) {
matrix_.set(0, 0, col1row1);
matrix_.set(1, 0, col1row2);
matrix_.set(2, 0, col1row3);
matrix_.set(3, 0, col1row4);
matrix_.set(0, 1, col2row1);
matrix_.set(1, 1, col2row2);
matrix_.set(2, 1, col2row3);
matrix_.set(3, 1, col2row4);
matrix_.set(0, 2, col3row1);
matrix_.set(1, 2, col3row2);
matrix_.set(2, 2, col3row3);
matrix_.set(3, 2, col3row4);
matrix_.set(0, 3, col4row1);
matrix_.set(1, 3, col4row2);
matrix_.set(2, 3, col4row3);
matrix_.set(3, 3, col4row4);
}
Transform::Transform(SkMScalar col1row1,
SkMScalar col2row1,
SkMScalar col1row2,
SkMScalar col2row2,
SkMScalar x_translation,
SkMScalar y_translation)
: matrix_(SkMatrix44::kIdentity_Constructor) {
matrix_.set(0, 0, col1row1);
matrix_.set(1, 0, col1row2);
matrix_.set(0, 1, col2row1);
matrix_.set(1, 1, col2row2);
matrix_.set(0, 3, x_translation);
matrix_.set(1, 3, y_translation);
}
void Transform::RotateAboutXAxis(double degrees) {
double radians = degrees * M_PI / 180;
SkMScalar cosTheta = SkDoubleToMScalar(std::cos(radians));
SkMScalar sinTheta = SkDoubleToMScalar(std::sin(radians));
if (matrix_.isIdentity()) {
matrix_.set3x3(1, 0, 0,
0, cosTheta, sinTheta,
0, -sinTheta, cosTheta);
} else {
SkMatrix44 rot(SkMatrix44::kUninitialized_Constructor);
rot.set3x3(1, 0, 0,
0, cosTheta, sinTheta,
0, -sinTheta, cosTheta);
matrix_.preConcat(rot);
}
}
void Transform::RotateAboutYAxis(double degrees) {
double radians = degrees * M_PI / 180;
SkMScalar cosTheta = SkDoubleToMScalar(std::cos(radians));
SkMScalar sinTheta = SkDoubleToMScalar(std::sin(radians));
if (matrix_.isIdentity()) {
// Note carefully the placement of the -sinTheta for rotation about
// y-axis is different than rotation about x-axis or z-axis.
matrix_.set3x3(cosTheta, 0, -sinTheta,
0, 1, 0,
sinTheta, 0, cosTheta);
} else {
SkMatrix44 rot(SkMatrix44::kUninitialized_Constructor);
rot.set3x3(cosTheta, 0, -sinTheta,
0, 1, 0,
sinTheta, 0, cosTheta);
matrix_.preConcat(rot);
}
}
void Transform::RotateAboutZAxis(double degrees) {
double radians = degrees * M_PI / 180;
SkMScalar cosTheta = SkDoubleToMScalar(std::cos(radians));
SkMScalar sinTheta = SkDoubleToMScalar(std::sin(radians));
if (matrix_.isIdentity()) {
matrix_.set3x3(cosTheta, sinTheta, 0,
-sinTheta, cosTheta, 0,
0, 0, 1);
} else {
SkMatrix44 rot(SkMatrix44::kUninitialized_Constructor);
rot.set3x3(cosTheta, sinTheta, 0,
-sinTheta, cosTheta, 0,
0, 0, 1);
matrix_.preConcat(rot);
}
}
void Transform::RotateAbout(const Vector3dF& axis, double degrees) {
if (matrix_.isIdentity()) {
matrix_.setRotateDegreesAbout(SkFloatToMScalar(axis.x()),
SkFloatToMScalar(axis.y()),
SkFloatToMScalar(axis.z()),
degrees);
} else {
SkMatrix44 rot(SkMatrix44::kUninitialized_Constructor);
rot.setRotateDegreesAbout(SkFloatToMScalar(axis.x()),
SkFloatToMScalar(axis.y()),
SkFloatToMScalar(axis.z()),
degrees);
matrix_.preConcat(rot);
}
}
void Transform::Scale(SkMScalar x, SkMScalar y) { matrix_.preScale(x, y, 1); }
void Transform::Scale3d(SkMScalar x, SkMScalar y, SkMScalar z) {
matrix_.preScale(x, y, z);
}
void Transform::Translate(SkMScalar x, SkMScalar y) {
matrix_.preTranslate(x, y, 0);
}
void Transform::Translate3d(SkMScalar x, SkMScalar y, SkMScalar z) {
matrix_.preTranslate(x, y, z);
}
void Transform::SkewX(double angle_x) {
if (matrix_.isIdentity())
matrix_.set(0, 1, TanDegrees(angle_x));
else {
SkMatrix44 skew(SkMatrix44::kIdentity_Constructor);
skew.set(0, 1, TanDegrees(angle_x));
matrix_.preConcat(skew);
}
}
void Transform::SkewY(double angle_y) {
if (matrix_.isIdentity())
matrix_.set(1, 0, TanDegrees(angle_y));
else {
SkMatrix44 skew(SkMatrix44::kIdentity_Constructor);
skew.set(1, 0, TanDegrees(angle_y));
matrix_.preConcat(skew);
}
}
void Transform::ApplyPerspectiveDepth(SkMScalar depth) {
if (depth == 0)
return;
if (matrix_.isIdentity())
matrix_.set(3, 2, -1.0 / depth);
else {
SkMatrix44 m(SkMatrix44::kIdentity_Constructor);
m.set(3, 2, -1.0 / depth);
matrix_.preConcat(m);
}
}
void Transform::PreconcatTransform(const Transform& transform) {
matrix_.preConcat(transform.matrix_);
}
void Transform::ConcatTransform(const Transform& transform) {
matrix_.postConcat(transform.matrix_);
}
bool Transform::IsApproximatelyIdentityOrTranslation(
SkMScalar tolerance) const {
DCHECK_GE(tolerance, 0);
return
ApproximatelyOne(matrix_.get(0, 0), tolerance) &&
ApproximatelyZero(matrix_.get(1, 0), tolerance) &&
ApproximatelyZero(matrix_.get(2, 0), tolerance) &&
matrix_.get(3, 0) == 0 &&
ApproximatelyZero(matrix_.get(0, 1), tolerance) &&
ApproximatelyOne(matrix_.get(1, 1), tolerance) &&
ApproximatelyZero(matrix_.get(2, 1), tolerance) &&
matrix_.get(3, 1) == 0 &&
ApproximatelyZero(matrix_.get(0, 2), tolerance) &&
ApproximatelyZero(matrix_.get(1, 2), tolerance) &&
ApproximatelyOne(matrix_.get(2, 2), tolerance) &&
matrix_.get(3, 2) == 0 &&
matrix_.get(3, 3) == 1;
}
bool Transform::IsIdentityOrIntegerTranslation() const {
if (!IsIdentityOrTranslation())
return false;
bool no_fractional_translation =
static_cast<int>(matrix_.get(0, 3)) == matrix_.get(0, 3) &&
static_cast<int>(matrix_.get(1, 3)) == matrix_.get(1, 3) &&
static_cast<int>(matrix_.get(2, 3)) == matrix_.get(2, 3);
return no_fractional_translation;
}
bool Transform::IsBackFaceVisible() const {
// Compute whether a layer with a forward-facing normal of (0, 0, 1, 0)
// would have its back face visible after applying the transform.
if (matrix_.isIdentity())
return false;
// This is done by transforming the normal and seeing if the resulting z
// value is positive or negative. However, note that transforming a normal
// actually requires using the inverse-transpose of the original transform.
//
// We can avoid inverting and transposing the matrix since we know we want
// to transform only the specific normal vector (0, 0, 1, 0). In this case,
// we only need the 3rd row, 3rd column of the inverse-transpose. We can
// calculate only the 3rd row 3rd column element of the inverse, skipping
// everything else.
//
// For more information, refer to:
// http://en.wikipedia.org/wiki/Invertible_matrix#Analytic_solution
//
double determinant = matrix_.determinant();
// If matrix was not invertible, then just assume back face is not visible.
if (std::abs(determinant) <= kEpsilon)
return false;
// Compute the cofactor of the 3rd row, 3rd column.
double cofactor_part_1 =
matrix_.get(0, 0) * matrix_.get(1, 1) * matrix_.get(3, 3);
double cofactor_part_2 =
matrix_.get(0, 1) * matrix_.get(1, 3) * matrix_.get(3, 0);
double cofactor_part_3 =
matrix_.get(0, 3) * matrix_.get(1, 0) * matrix_.get(3, 1);
double cofactor_part_4 =
matrix_.get(0, 0) * matrix_.get(1, 3) * matrix_.get(3, 1);
double cofactor_part_5 =
matrix_.get(0, 1) * matrix_.get(1, 0) * matrix_.get(3, 3);
double cofactor_part_6 =
matrix_.get(0, 3) * matrix_.get(1, 1) * matrix_.get(3, 0);
double cofactor33 =
cofactor_part_1 +
cofactor_part_2 +
cofactor_part_3 -
cofactor_part_4 -
cofactor_part_5 -
cofactor_part_6;
// Technically the transformed z component is cofactor33 / determinant. But
// we can avoid the costly division because we only care about the resulting
// +/- sign; we can check this equivalently by multiplication.
return cofactor33 * determinant < 0;
}
bool Transform::GetInverse(Transform* transform) const {
if (!matrix_.invert(&transform->matrix_)) {
// Initialize the return value to identity if this matrix turned
// out to be un-invertible.
transform->MakeIdentity();
return false;
}
return true;
}
bool Transform::Preserves2dAxisAlignment() const {
// Check whether an axis aligned 2-dimensional rect would remain axis-aligned
// after being transformed by this matrix (and implicitly projected by
// dropping any non-zero z-values).
//
// The 4th column can be ignored because translations don't affect axis
// alignment. The 3rd column can be ignored because we are assuming 2d
// inputs, where z-values will be zero. The 3rd row can also be ignored
// because we are assuming 2d outputs, and any resulting z-value is dropped
// anyway. For the inner 2x2 portion, the only effects that keep a rect axis
// aligned are (1) swapping axes and (2) scaling axes. This can be checked by
// verifying only 1 element of every column and row is non-zero. Degenerate
// cases that project the x or y dimension to zero are considered to preserve
// axis alignment.
//
// If the matrix does have perspective component that is affected by x or y
// values: The current implementation conservatively assumes that axis
// alignment is not preserved.
bool has_x_or_y_perspective =
matrix_.get(3, 0) != 0 || matrix_.get(3, 1) != 0;
int num_non_zero_in_row_0 = 0;
int num_non_zero_in_row_1 = 0;
int num_non_zero_in_col_0 = 0;
int num_non_zero_in_col_1 = 0;
if (std::abs(matrix_.get(0, 0)) > kEpsilon) {
num_non_zero_in_row_0++;
num_non_zero_in_col_0++;
}
if (std::abs(matrix_.get(0, 1)) > kEpsilon) {
num_non_zero_in_row_0++;
num_non_zero_in_col_1++;
}
if (std::abs(matrix_.get(1, 0)) > kEpsilon) {
num_non_zero_in_row_1++;
num_non_zero_in_col_0++;
}
if (std::abs(matrix_.get(1, 1)) > kEpsilon) {
num_non_zero_in_row_1++;
num_non_zero_in_col_1++;
}
return
num_non_zero_in_row_0 <= 1 &&
num_non_zero_in_row_1 <= 1 &&
num_non_zero_in_col_0 <= 1 &&
num_non_zero_in_col_1 <= 1 &&
!has_x_or_y_perspective;
}
void Transform::Transpose() {
matrix_.transpose();
}
void Transform::FlattenTo2d() {
matrix_.set(2, 0, 0.0);
matrix_.set(2, 1, 0.0);
matrix_.set(0, 2, 0.0);
matrix_.set(1, 2, 0.0);
matrix_.set(2, 2, 1.0);
matrix_.set(3, 2, 0.0);
matrix_.set(2, 3, 0.0);
}
Vector2dF Transform::To2dTranslation() const {
return gfx::Vector2dF(SkMScalarToFloat(matrix_.get(0, 3)),
SkMScalarToFloat(matrix_.get(1, 3)));
}
void Transform::TransformPoint(Point* point) const {
DCHECK(point);
TransformPointInternal(matrix_, point);
}
void Transform::TransformPoint(Point3F* point) const {
DCHECK(point);
TransformPointInternal(matrix_, point);
}
bool Transform::TransformPointReverse(Point* point) const {
DCHECK(point);
// TODO(sad): Try to avoid trying to invert the matrix.
SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor);
if (!matrix_.invert(&inverse))
return false;
TransformPointInternal(inverse, point);
return true;
}
bool Transform::TransformPointReverse(Point3F* point) const {
DCHECK(point);
// TODO(sad): Try to avoid trying to invert the matrix.
SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor);
if (!matrix_.invert(&inverse))
return false;
TransformPointInternal(inverse, point);
return true;
}
void Transform::TransformRect(RectF* rect) const {
if (matrix_.isIdentity())
return;
SkRect src = RectFToSkRect(*rect);
const SkMatrix& matrix = matrix_;
matrix.mapRect(&src);
*rect = SkRectToRectF(src);
}
bool Transform::TransformRectReverse(RectF* rect) const {
if (matrix_.isIdentity())
return true;
SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor);
if (!matrix_.invert(&inverse))
return false;
const SkMatrix& matrix = inverse;
SkRect src = RectFToSkRect(*rect);
matrix.mapRect(&src);
*rect = SkRectToRectF(src);
return true;
}
void Transform::TransformBox(BoxF* box) const {
BoxF bounds;
bool first_point = true;
for (int corner = 0; corner < 8; ++corner) {
gfx::Point3F point = box->origin();
point += gfx::Vector3dF(corner & 1 ? box->width() : 0.f,
corner & 2 ? box->height() : 0.f,
corner & 4 ? box->depth() : 0.f);
TransformPoint(&point);
if (first_point) {
bounds.set_origin(point);
first_point = false;
} else {
bounds.ExpandTo(point);
}
}
*box = bounds;
}
bool Transform::TransformBoxReverse(BoxF* box) const {
gfx::Transform inverse = *this;
if (!GetInverse(&inverse))
return false;
inverse.TransformBox(box);
return true;
}
bool Transform::Blend(const Transform& from, double progress) {
DecomposedTransform to_decomp;
DecomposedTransform from_decomp;
if (!DecomposeTransform(&to_decomp, *this) ||
!DecomposeTransform(&from_decomp, from))
return false;
if (!BlendDecomposedTransforms(&to_decomp, to_decomp, from_decomp, progress))
return false;
matrix_ = ComposeTransform(to_decomp).matrix();
return true;
}
void Transform::TransformPointInternal(const SkMatrix44& xform,
Point3F* point) const {
if (xform.isIdentity())
return;
SkMScalar p[4] = {SkFloatToMScalar(point->x()), SkFloatToMScalar(point->y()),
SkFloatToMScalar(point->z()), 1};
xform.mapMScalars(p);
if (p[3] != SK_MScalar1 && p[3] != 0.f) {
float w_inverse = SK_MScalar1 / p[3];
point->SetPoint(p[0] * w_inverse, p[1] * w_inverse, p[2] * w_inverse);
} else {
point->SetPoint(p[0], p[1], p[2]);
}
}
void Transform::TransformPointInternal(const SkMatrix44& xform,
Point* point) const {
if (xform.isIdentity())
return;
SkMScalar p[4] = {SkFloatToMScalar(point->x()), SkFloatToMScalar(point->y()),
0, 1};
xform.mapMScalars(p);
point->SetPoint(ToRoundedInt(p[0]), ToRoundedInt(p[1]));
}
std::string Transform::ToString() const {
return base::StringPrintf(
"[ %+0.4f %+0.4f %+0.4f %+0.4f \n"
" %+0.4f %+0.4f %+0.4f %+0.4f \n"
" %+0.4f %+0.4f %+0.4f %+0.4f \n"
" %+0.4f %+0.4f %+0.4f %+0.4f ]\n",
matrix_.get(0, 0),
matrix_.get(0, 1),
matrix_.get(0, 2),
matrix_.get(0, 3),
matrix_.get(1, 0),
matrix_.get(1, 1),
matrix_.get(1, 2),
matrix_.get(1, 3),
matrix_.get(2, 0),
matrix_.get(2, 1),
matrix_.get(2, 2),
matrix_.get(2, 3),
matrix_.get(3, 0),
matrix_.get(3, 1),
matrix_.get(3, 2),
matrix_.get(3, 3));
}
} // namespace gfx
|