1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/transform_util.h"
#include <cmath>
#include "ui/gfx/point.h"
namespace gfx {
namespace {
double Length3(double v[3]) {
return std::sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
}
void Scale3(double v[3], double scale) {
for (int i = 0; i < 3; ++i)
v[i] *= scale;
}
template <int n>
double Dot(const double* a, const double* b) {
double toReturn = 0;
for (int i = 0; i < n; ++i)
toReturn += a[i] * b[i];
return toReturn;
}
template <int n>
void Combine(double* out,
const double* a,
const double* b,
double scale_a,
double scale_b) {
for (int i = 0; i < n; ++i)
out[i] = a[i] * scale_a + b[i] * scale_b;
}
void Cross3(double out[3], double a[3], double b[3]) {
double x = a[1] * b[2] - a[2] * b[1];
double y = a[2] * b[0] - a[0] * b[2];
double z = a[0] * b[1] - a[1] * b[0];
out[0] = x;
out[1] = y;
out[2] = z;
}
// Taken from http://www.w3.org/TR/css3-transforms/.
bool Slerp(double out[4],
const double q1[4],
const double q2[4],
double progress) {
double product = Dot<4>(q1, q2);
// Clamp product to -1.0 <= product <= 1.0.
product = std::min(std::max(product, -1.0), 1.0);
// Interpolate angles along the shortest path. For example, to interpolate
// between a 175 degree angle and a 185 degree angle, interpolate along the
// 10 degree path from 175 to 185, rather than along the 350 degree path in
// the opposite direction. This matches WebKit's implementation but not
// the current W3C spec. Fixing the spec to match this approach is discussed
// at:
// http://lists.w3.org/Archives/Public/www-style/2013May/0131.html
double scale1 = 1.0;
if (product < 0) {
product = -product;
scale1 = -1.0;
}
const double epsilon = 1e-5;
if (std::abs(product - 1.0) < epsilon) {
for (int i = 0; i < 4; ++i)
out[i] = q1[i];
return true;
}
double denom = std::sqrt(1 - product * product);
double theta = std::acos(product);
double w = std::sin(progress * theta) * (1 / denom);
scale1 *= std::cos(progress * theta) - product * w;
double scale2 = w;
Combine<4>(out, q1, q2, scale1, scale2);
return true;
}
// Returns false if the matrix cannot be normalized.
bool Normalize(SkMatrix44& m) {
if (m.getDouble(3, 3) == 0.0)
// Cannot normalize.
return false;
double scale = 1.0 / m.getDouble(3, 3);
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
m.setDouble(i, j, m.getDouble(i, j) * scale);
return true;
}
} // namespace
Transform GetScaleTransform(const Point& anchor, float scale) {
Transform transform;
transform.Translate(anchor.x() * (1 - scale),
anchor.y() * (1 - scale));
transform.Scale(scale, scale);
return transform;
}
DecomposedTransform::DecomposedTransform() {
translate[0] = translate[1] = translate[2] = 0.0;
scale[0] = scale[1] = scale[2] = 1.0;
skew[0] = skew[1] = skew[2] = 0.0;
perspective[0] = perspective[1] = perspective[2] = 0.0;
quaternion[0] = quaternion[1] = quaternion[2] = 0.0;
perspective[3] = quaternion[3] = 1.0;
}
bool BlendDecomposedTransforms(DecomposedTransform* out,
const DecomposedTransform& to,
const DecomposedTransform& from,
double progress) {
double scalea = progress;
double scaleb = 1.0 - progress;
Combine<3>(out->translate, to.translate, from.translate, scalea, scaleb);
Combine<3>(out->scale, to.scale, from.scale, scalea, scaleb);
Combine<3>(out->skew, to.skew, from.skew, scalea, scaleb);
Combine<4>(
out->perspective, to.perspective, from.perspective, scalea, scaleb);
return Slerp(out->quaternion, from.quaternion, to.quaternion, progress);
}
// Taken from http://www.w3.org/TR/css3-transforms/.
bool DecomposeTransform(DecomposedTransform* decomp,
const Transform& transform) {
if (!decomp)
return false;
// We'll operate on a copy of the matrix.
SkMatrix44 matrix = transform.matrix();
// If we cannot normalize the matrix, then bail early as we cannot decompose.
if (!Normalize(matrix))
return false;
SkMatrix44 perspectiveMatrix = matrix;
for (int i = 0; i < 3; ++i)
perspectiveMatrix.setDouble(3, i, 0.0);
perspectiveMatrix.setDouble(3, 3, 1.0);
// If the perspective matrix is not invertible, we are also unable to
// decompose, so we'll bail early. Constant taken from SkMatrix44::invert.
if (std::abs(perspectiveMatrix.determinant()) < 1e-8)
return false;
if (matrix.getDouble(3, 0) != 0.0 ||
matrix.getDouble(3, 1) != 0.0 ||
matrix.getDouble(3, 2) != 0.0) {
// rhs is the right hand side of the equation.
SkMScalar rhs[4] = {
matrix.get(3, 0),
matrix.get(3, 1),
matrix.get(3, 2),
matrix.get(3, 3)
};
// Solve the equation by inverting perspectiveMatrix and multiplying
// rhs by the inverse.
SkMatrix44 inversePerspectiveMatrix(SkMatrix44::kUninitialized_Constructor);
if (!perspectiveMatrix.invert(&inversePerspectiveMatrix))
return false;
SkMatrix44 transposedInversePerspectiveMatrix =
inversePerspectiveMatrix;
transposedInversePerspectiveMatrix.transpose();
transposedInversePerspectiveMatrix.mapMScalars(rhs);
for (int i = 0; i < 4; ++i)
decomp->perspective[i] = rhs[i];
} else {
// No perspective.
for (int i = 0; i < 3; ++i)
decomp->perspective[i] = 0.0;
decomp->perspective[3] = 1.0;
}
for (int i = 0; i < 3; i++)
decomp->translate[i] = matrix.getDouble(i, 3);
double row[3][3];
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; ++j)
row[i][j] = matrix.getDouble(j, i);
// Compute X scale factor and normalize first row.
decomp->scale[0] = Length3(row[0]);
if (decomp->scale[0] != 0.0)
Scale3(row[0], 1.0 / decomp->scale[0]);
// Compute XY shear factor and make 2nd row orthogonal to 1st.
decomp->skew[0] = Dot<3>(row[0], row[1]);
Combine<3>(row[1], row[1], row[0], 1.0, -decomp->skew[0]);
// Now, compute Y scale and normalize 2nd row.
decomp->scale[1] = Length3(row[1]);
if (decomp->scale[1] != 0.0)
Scale3(row[1], 1.0 / decomp->scale[1]);
decomp->skew[0] /= decomp->scale[1];
// Compute XZ and YZ shears, orthogonalize 3rd row
decomp->skew[1] = Dot<3>(row[0], row[2]);
Combine<3>(row[2], row[2], row[0], 1.0, -decomp->skew[1]);
decomp->skew[2] = Dot<3>(row[1], row[2]);
Combine<3>(row[2], row[2], row[1], 1.0, -decomp->skew[2]);
// Next, get Z scale and normalize 3rd row.
decomp->scale[2] = Length3(row[2]);
if (decomp->scale[2] != 0.0)
Scale3(row[2], 1.0 / decomp->scale[2]);
decomp->skew[1] /= decomp->scale[2];
decomp->skew[2] /= decomp->scale[2];
// At this point, the matrix (in rows) is orthonormal.
// Check for a coordinate system flip. If the determinant
// is -1, then negate the matrix and the scaling factors.
double pdum3[3];
Cross3(pdum3, row[1], row[2]);
if (Dot<3>(row[0], pdum3) < 0) {
for (int i = 0; i < 3; i++) {
decomp->scale[i] *= -1.0;
for (int j = 0; j < 3; ++j)
row[i][j] *= -1.0;
}
}
decomp->quaternion[0] =
0.5 * std::sqrt(std::max(1.0 + row[0][0] - row[1][1] - row[2][2], 0.0));
decomp->quaternion[1] =
0.5 * std::sqrt(std::max(1.0 - row[0][0] + row[1][1] - row[2][2], 0.0));
decomp->quaternion[2] =
0.5 * std::sqrt(std::max(1.0 - row[0][0] - row[1][1] + row[2][2], 0.0));
decomp->quaternion[3] =
0.5 * std::sqrt(std::max(1.0 + row[0][0] + row[1][1] + row[2][2], 0.0));
if (row[2][1] > row[1][2])
decomp->quaternion[0] = -decomp->quaternion[0];
if (row[0][2] > row[2][0])
decomp->quaternion[1] = -decomp->quaternion[1];
if (row[1][0] > row[0][1])
decomp->quaternion[2] = -decomp->quaternion[2];
return true;
}
// Taken from http://www.w3.org/TR/css3-transforms/.
Transform ComposeTransform(const DecomposedTransform& decomp) {
SkMatrix44 matrix(SkMatrix44::kIdentity_Constructor);
for (int i = 0; i < 4; i++)
matrix.setDouble(3, i, decomp.perspective[i]);
matrix.preTranslate(SkDoubleToMScalar(decomp.translate[0]),
SkDoubleToMScalar(decomp.translate[1]),
SkDoubleToMScalar(decomp.translate[2]));
double x = decomp.quaternion[0];
double y = decomp.quaternion[1];
double z = decomp.quaternion[2];
double w = decomp.quaternion[3];
SkMatrix44 rotation_matrix(SkMatrix44::kUninitialized_Constructor);
rotation_matrix.set3x3(1.0 - 2.0 * (y * y + z * z),
2.0 * (x * y + z * w),
2.0 * (x * z - y * w),
2.0 * (x * y - z * w),
1.0 - 2.0 * (x * x + z * z),
2.0 * (y * z + x * w),
2.0 * (x * z + y * w),
2.0 * (y * z - x * w),
1.0 - 2.0 * (x * x + y * y));
matrix.preConcat(rotation_matrix);
SkMatrix44 temp(SkMatrix44::kIdentity_Constructor);
if (decomp.skew[2]) {
temp.setDouble(1, 2, decomp.skew[2]);
matrix.preConcat(temp);
}
if (decomp.skew[1]) {
temp.setDouble(1, 2, 0);
temp.setDouble(0, 2, decomp.skew[1]);
matrix.preConcat(temp);
}
if (decomp.skew[0]) {
temp.setDouble(0, 2, 0);
temp.setDouble(0, 1, decomp.skew[0]);
matrix.preConcat(temp);
}
matrix.preScale(SkDoubleToMScalar(decomp.scale[0]),
SkDoubleToMScalar(decomp.scale[1]),
SkDoubleToMScalar(decomp.scale[2]));
Transform to_return;
to_return.matrix() = matrix;
return to_return;
}
} // namespace ui
|