1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
|
// Copyright (c) 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gl/gpu_timing.h"
#include "base/macros.h"
#include "base/time/time.h"
#include "ui/gl/gl_bindings.h"
#include "ui/gl/gl_context.h"
#include "ui/gl/gl_version_info.h"
namespace gfx {
class TimeElapsedTimerQuery;
class TimerQuery;
int64_t NanoToMicro(uint64_t nano_seconds) {
const uint64_t up = nano_seconds + base::Time::kNanosecondsPerMicrosecond / 2;
return static_cast<int64_t>(up / base::Time::kNanosecondsPerMicrosecond);
}
int32_t QueryTimestampBits() {
GLint timestamp_bits;
glGetQueryiv(GL_TIMESTAMP, GL_QUERY_COUNTER_BITS, ×tamp_bits);
return static_cast<int32_t>(timestamp_bits);
}
class GPUTimingImpl : public GPUTiming {
public:
GPUTimingImpl(GLContextReal* context);
~GPUTimingImpl() override;
void ForceTimeElapsedQuery() { force_time_elapsed_query_ = true; }
bool IsForceTimeElapsedQuery() { return force_time_elapsed_query_; }
GPUTiming::TimerType GetTimerType() const { return timer_type_; }
uint32_t GetDisjointCount();
int64_t CalculateTimerOffset();
scoped_refptr<QueryResult> BeginElapsedTimeQuery();
void EndElapsedTimeQuery(scoped_refptr<QueryResult> result);
scoped_refptr<QueryResult> DoTimeStampQuery();
int64_t GetCurrentCPUTime() {
return cpu_time_for_testing_.is_null()
? (base::TimeTicks::Now() - base::TimeTicks()).InMicroseconds()
: cpu_time_for_testing_.Run();
}
void SetCpuTimeForTesting(const base::Callback<int64_t(void)>& cpu_time) {
cpu_time_for_testing_ = cpu_time;
}
void UpdateQueryResults();
int64_t GetMaxTimeStamp() { return max_time_stamp_; }
void UpdateMaxTimeStamp(int64_t value) {
max_time_stamp_ = std::max(max_time_stamp_, value);
}
uint32_t GetElapsedQueryCount() { return elapsed_query_count_; }
void IncElapsedQueryCount() { elapsed_query_count_++; }
void DecElapsedQueryCount() { elapsed_query_count_--; }
void SetLastElapsedQuery(scoped_refptr<TimeElapsedTimerQuery> query);
scoped_refptr<TimeElapsedTimerQuery> GetLastElapsedQuery();
void HandleBadQuery();
bool IsGoodQueryID(uint32_t query_id);
private:
scoped_refptr<GPUTimingClient> CreateGPUTimingClient() override;
base::Callback<int64_t(void)> cpu_time_for_testing_;
GPUTiming::TimerType timer_type_ = GPUTiming::kTimerTypeInvalid;
uint32_t disjoint_counter_ = 0;
int64_t offset_ = 0; // offset cache when timer_type_ == kTimerTypeARB
bool offset_valid_ = false;
bool force_time_elapsed_query_ = false;
int32_t timestamp_bit_count_gl_ = -1; // gl implementation timestamp bits
uint32_t next_timer_query_id_ = 0;
uint32_t next_good_timer_query_id_ = 0; // identify bad ids for disjoints.
uint32_t query_disjoint_count_ = 0;
// Extra state tracking data for elapsed timer queries.
int64_t max_time_stamp_ = 0;
uint32_t elapsed_query_count_ = 0;
scoped_refptr<TimeElapsedTimerQuery> last_elapsed_query_;
std::deque<scoped_refptr<TimerQuery> > queries_;
DISALLOW_COPY_AND_ASSIGN(GPUTimingImpl);
};
class QueryResult : public base::RefCounted<QueryResult> {
public:
QueryResult() {}
bool IsAvailable() const { return available_; }
int64_t GetDelta() const { return end_value_ - start_value_; }
int64_t GetStartValue() const { return start_value_; }
int64_t GetEndValue() const { return end_value_; }
void SetStartValue(int64_t value) { start_value_ = value; }
void SetEndValue(int64_t value) { available_ = true; end_value_ = value; }
private:
friend class base::RefCounted<QueryResult>;
~QueryResult() {}
bool available_ = false;
int64_t start_value_ = 0;
int64_t end_value_ = 0;
DISALLOW_COPY_AND_ASSIGN(QueryResult);
};
class TimerQuery : public base::RefCounted<TimerQuery> {
public:
TimerQuery(uint32_t next_id);
virtual void Destroy() = 0;
// Returns true when UpdateQueryResults() is ready to be called.
virtual bool IsAvailable(GPUTimingImpl* gpu_timing) = 0;
// Fills out query result start and end, called after IsAvailable() is true.
virtual void UpdateQueryResults(GPUTimingImpl* gpu_timing) = 0;
// Called when Query is next in line, used to transition states.
virtual void PrepareNextUpdate(scoped_refptr<TimerQuery> prev) {}
uint32_t timer_query_id_ = 0;
int64_t time_stamp_ = 0; // Timestamp of the query, could be estimated.
protected:
friend class base::RefCounted<TimerQuery>;
virtual ~TimerQuery();
DISALLOW_COPY_AND_ASSIGN(TimerQuery);
};
TimerQuery::TimerQuery(uint32_t next_id)
: timer_query_id_(next_id) {
}
TimerQuery::~TimerQuery() {
}
class TimeElapsedTimerQuery : public TimerQuery {
public:
TimeElapsedTimerQuery(GPUTimingImpl* gpu_timing, uint32_t next_id)
: TimerQuery(next_id) {
glGenQueries(1, &gl_query_id_);
}
void Destroy() override {
glDeleteQueries(1, &gl_query_id_);
}
scoped_refptr<QueryResult> StartQuery(GPUTimingImpl* gpu_timing) {
DCHECK(query_result_start_.get() == nullptr);
query_begin_cpu_time_ = gpu_timing->GetCurrentCPUTime();
if (gpu_timing->GetElapsedQueryCount() == 0) {
first_top_level_query_ = true;
} else {
// Stop the current timer query.
glEndQuery(GL_TIME_ELAPSED);
}
// begin a new one time elapsed query.
glBeginQuery(GL_TIME_ELAPSED, gl_query_id_);
query_result_start_ = new QueryResult();
// Update GPUTiming state.
gpu_timing->SetLastElapsedQuery(this);
gpu_timing->IncElapsedQueryCount();
return query_result_start_;
}
void EndQuery(GPUTimingImpl* gpu_timing,
scoped_refptr<QueryResult> result) {
DCHECK(gpu_timing->GetElapsedQueryCount() != 0);
scoped_refptr<TimeElapsedTimerQuery> last_query =
gpu_timing->GetLastElapsedQuery();
DCHECK(last_query.get());
DCHECK(last_query->query_result_end_.get() == nullptr);
last_query->query_result_end_ = result;
gpu_timing->DecElapsedQueryCount();
if (gpu_timing->GetElapsedQueryCount() != 0) {
// Continue timer if there are still ongoing queries.
glEndQuery(GL_TIME_ELAPSED);
glBeginQuery(GL_TIME_ELAPSED, gl_query_id_);
gpu_timing->SetLastElapsedQuery(this);
} else {
// Simply end the query and reset the current offset
glEndQuery(GL_TIME_ELAPSED);
gpu_timing->SetLastElapsedQuery(nullptr);
}
}
// Returns true when UpdateQueryResults() is ready to be called.
bool IsAvailable(GPUTimingImpl* gpu_timing) override {
if (gpu_timing->GetElapsedQueryCount() != 0 &&
gpu_timing->GetLastElapsedQuery() == this) {
// Cannot query if result is available if EndQuery has not been called.
// Since only one query is going on at a time, the end query is only not
// called for the very last query when ongoing query counter is not 0.
return false;
}
GLuint done = 0;
glGetQueryObjectuiv(gl_query_id_, GL_QUERY_RESULT_AVAILABLE, &done);
return !!done;
}
// Fills out query result start and end, called after IsAvailable() is true.
void UpdateQueryResults(GPUTimingImpl* gpu_timing) override {
GLuint64 result_value = 0;
glGetQueryObjectui64v(gl_query_id_, GL_QUERY_RESULT, &result_value);
const int64_t micro_results = NanoToMicro(result_value);
// Adjust prev query end time if it is before the current max.
const int64_t start_time =
std::max(first_top_level_query_ ? query_begin_cpu_time_ : 0,
std::max(prev_query_end_time_,
gpu_timing->GetMaxTimeStamp()));
// As a sanity check, is result value is greater than the time allotted we
// can safely say this is garbage data
const int64_t max_possible_time =
gpu_timing->GetCurrentCPUTime() - query_begin_cpu_time_;
if (micro_results > max_possible_time) {
gpu_timing->HandleBadQuery();
}
// Elapsed queries need to be adjusted so they are relative to one another.
// Absolute timer queries are already relative to one another absolutely.
time_stamp_ = start_time + micro_results;
if (query_result_start_.get()) {
query_result_start_->SetStartValue(start_time);
}
if (query_result_end_.get()) {
query_result_end_->SetEndValue(time_stamp_);
}
}
// Called when Query is next in line, used to transition states.
void PrepareNextUpdate(scoped_refptr<TimerQuery> prev) override {
prev_query_end_time_ = prev->time_stamp_;
}
private:
~TimeElapsedTimerQuery() override {}
bool first_top_level_query_ = false;
uint32_t gl_query_id_ = 0;
int64_t prev_query_end_time_ = 0;
int64_t query_begin_cpu_time_ = 0;
scoped_refptr<QueryResult> query_result_start_;
scoped_refptr<QueryResult> query_result_end_;
};
class TimeStampTimerQuery : public TimerQuery {
public:
TimeStampTimerQuery(uint32_t next_id)
: TimerQuery(next_id) {
glGenQueries(1, &gl_query_id_);
}
void Destroy() override {
glDeleteQueries(1, &gl_query_id_);
}
scoped_refptr<QueryResult> DoQuery() {
glQueryCounter(gl_query_id_, GL_TIMESTAMP);
query_result_ = new QueryResult();
return query_result_;
}
// Returns true when UpdateQueryResults() is ready to be called.
bool IsAvailable(GPUTimingImpl* gpu_timing) override {
GLuint done = 0;
glGetQueryObjectuiv(gl_query_id_, GL_QUERY_RESULT_AVAILABLE, &done);
return !!done;
}
// Fills out query result start and end, called after IsAvailable() is true.
void UpdateQueryResults(GPUTimingImpl* gpu_timing) override {
DCHECK(IsAvailable(gpu_timing));
GLuint64 result_value = 0;
glGetQueryObjectui64v(gl_query_id_, GL_QUERY_RESULT, &result_value);
const int64_t micro_results = NanoToMicro(result_value);
const int64_t offset = gpu_timing->CalculateTimerOffset();
const int64_t adjusted_result = micro_results + offset;
DCHECK(query_result_.get());
query_result_->SetStartValue(adjusted_result);
query_result_->SetEndValue(adjusted_result);
time_stamp_ = adjusted_result;
}
private:
~TimeStampTimerQuery() override {}
uint32_t gl_query_id_ = 0;
scoped_refptr<QueryResult> query_result_;
};
GPUTimingImpl::GPUTimingImpl(GLContextReal* context) {
DCHECK(context);
const GLVersionInfo* version_info = context->GetVersionInfo();
DCHECK(version_info);
if (context->HasExtension("GL_EXT_disjoint_timer_query")) {
timer_type_ = GPUTiming::kTimerTypeDisjoint;
} else if (context->HasExtension("GL_ARB_timer_query")) {
timer_type_ = GPUTiming::kTimerTypeARB;
} else if (context->HasExtension("GL_EXT_timer_query")) {
timer_type_ = GPUTiming::kTimerTypeEXT;
force_time_elapsed_query_ = true;
timestamp_bit_count_gl_ = 0;
}
// The command glGetInteger64v is only supported under ES3 and GL3.2. Since it
// is only used for timestamps, we workaround this by emulating timestamps
// so WebGL 1.0 will still have access to the extension.
if (!version_info->IsAtLeastGLES(3, 0) && !version_info->IsAtLeastGL(3, 2)) {
force_time_elapsed_query_ = true;
timestamp_bit_count_gl_ = 0;
}
}
GPUTimingImpl::~GPUTimingImpl() {
}
uint32_t GPUTimingImpl::GetDisjointCount() {
if (timer_type_ == GPUTiming::kTimerTypeDisjoint) {
GLint disjoint_value = 0;
glGetIntegerv(GL_GPU_DISJOINT_EXT, &disjoint_value);
if (disjoint_value) {
offset_valid_ = false;
disjoint_counter_++;
}
}
return disjoint_counter_;
}
int64_t GPUTimingImpl::CalculateTimerOffset() {
if (!offset_valid_) {
if (timer_type_ == GPUTiming::kTimerTypeDisjoint ||
timer_type_ == GPUTiming::kTimerTypeARB) {
GLint64 gl_now = 0;
glGetInteger64v(GL_TIMESTAMP, &gl_now);
const int64_t cpu_time = GetCurrentCPUTime();
const int64_t micro_offset = cpu_time - NanoToMicro(gl_now);
// We cannot expect these instructions to run with the accuracy
// within 1 microsecond, instead discard differences which are less
// than a single millisecond.
base::TimeDelta delta =
base::TimeDelta::FromMicroseconds(micro_offset - offset_);
if (delta.magnitude().InMilliseconds() >= 1) {
offset_ = micro_offset;
offset_valid_ = (timer_type_ == GPUTiming::kTimerTypeARB);
}
} else {
offset_ = 0;
offset_valid_ = true;
}
}
return offset_;
}
scoped_refptr<QueryResult> GPUTimingImpl::BeginElapsedTimeQuery() {
DCHECK(timer_type_ != GPUTiming::kTimerTypeInvalid);
queries_.push_back(new TimeElapsedTimerQuery(this, next_timer_query_id_++));
return static_cast<TimeElapsedTimerQuery*>(
queries_.back().get())->StartQuery(this);
}
void GPUTimingImpl::EndElapsedTimeQuery(scoped_refptr<QueryResult> result) {
DCHECK(timer_type_ != GPUTiming::kTimerTypeInvalid);
DCHECK(result.get());
if (GetElapsedQueryCount() > 1) {
// Create new elapsed timer query if there are still ongoing queries.
queries_.push_back(new TimeElapsedTimerQuery(this,
next_timer_query_id_++));
static_cast<TimeElapsedTimerQuery*>(
queries_.back().get())->EndQuery(this, result);
} else {
// Simply end the query and reset the current offset
DCHECK(GetLastElapsedQuery().get());
GetLastElapsedQuery()->EndQuery(this, result);
DCHECK(GetLastElapsedQuery().get() == nullptr);
}
}
scoped_refptr<QueryResult> GPUTimingImpl::DoTimeStampQuery() {
DCHECK(timer_type_ != GPUTiming::kTimerTypeInvalid);
// Certain GL drivers have timestamp bit count set to 0 which means timestamps
// aren't supported. Emulate them with time elapsed queries if that is the
// case.
if (timestamp_bit_count_gl_ == -1) {
DCHECK(timer_type_ != GPUTiming::kTimerTypeEXT);
timestamp_bit_count_gl_ = QueryTimestampBits();
force_time_elapsed_query_ = (timestamp_bit_count_gl_ == 0);
}
if (force_time_elapsed_query_) {
// Replace with elapsed timer queries instead.
scoped_refptr<QueryResult> result = BeginElapsedTimeQuery();
EndElapsedTimeQuery(result);
return result;
}
queries_.push_back(new TimeStampTimerQuery(next_timer_query_id_++));
return static_cast<TimeStampTimerQuery*>(queries_.back().get())->DoQuery();
}
void GPUTimingImpl::UpdateQueryResults() {
// Query availability of and count the queries that are available.
int available_queries = 0;
for (const scoped_refptr<TimerQuery>& query : queries_) {
if (!query->IsAvailable(this))
break;
available_queries++;
}
// Check for disjoints, this must be done after we checked for availability.
const uint32_t disjoint_counter = GetDisjointCount();
if (disjoint_counter != query_disjoint_count_) {
next_good_timer_query_id_ = next_timer_query_id_;
query_disjoint_count_ = disjoint_counter;
}
// Fill in the query result data once we know the disjoint value is updated.
// Note that even if disjoint happened and the values may or may not be
// garbage, we still fill it in and let GPUTimingClient's detect and disgard
// bad query data. The only thing we need to account for here is to not
// use garbade timer data to fill states such as max query times.
for (int i = 0; i < available_queries; ++i) {
scoped_refptr<TimerQuery> query = queries_.front();
query->UpdateQueryResults(this);
DCHECK(query->time_stamp_) << "Query Timestamp was not updated.";
// For good queries, keep track of the max valid time stamps.
if (IsGoodQueryID(query->timer_query_id_))
UpdateMaxTimeStamp(query->time_stamp_);
query->Destroy();
queries_.pop_front();
if (!queries_.empty())
queries_.front()->PrepareNextUpdate(query);
}
}
void GPUTimingImpl::SetLastElapsedQuery(
scoped_refptr<TimeElapsedTimerQuery> query) {
last_elapsed_query_ = query;
}
scoped_refptr<TimeElapsedTimerQuery> GPUTimingImpl::GetLastElapsedQuery() {
return last_elapsed_query_;
}
void GPUTimingImpl::HandleBadQuery() {
// Mark all queries as bad and signal an artificial disjoint value.
next_good_timer_query_id_ = next_timer_query_id_;
offset_valid_ = false;
query_disjoint_count_ = ++disjoint_counter_;
}
bool GPUTimingImpl::IsGoodQueryID(uint32_t query_id) {
return query_id >= next_good_timer_query_id_;
}
scoped_refptr<GPUTimingClient> GPUTimingImpl::CreateGPUTimingClient() {
return new GPUTimingClient(this);
}
GPUTiming* GPUTiming::CreateGPUTiming(GLContextReal* context) {
return new GPUTimingImpl(context);
}
GPUTiming::GPUTiming() {
}
GPUTiming::~GPUTiming() {
}
GPUTimer::~GPUTimer() {
}
void GPUTimer::Destroy(bool have_context) {
if (have_context) {
if (timer_state_ == kTimerState_WaitingForEnd) {
DCHECK(gpu_timing_client_->gpu_timing_);
DCHECK(elapsed_timer_result_.get());
gpu_timing_client_->gpu_timing_->EndElapsedTimeQuery(
elapsed_timer_result_);
}
}
}
void GPUTimer::Reset() {
// We can reset from any state other than when a Start() is waiting for End().
DCHECK(timer_state_ != kTimerState_WaitingForEnd);
time_stamp_result_ = nullptr;
elapsed_timer_result_ = nullptr;
timer_state_ = kTimerState_Ready;
}
void GPUTimer::QueryTimeStamp() {
DCHECK(gpu_timing_client_->gpu_timing_);
Reset();
time_stamp_result_ = gpu_timing_client_->gpu_timing_->DoTimeStampQuery();
timer_state_ = kTimerState_WaitingForResult;
}
void GPUTimer::Start() {
DCHECK(gpu_timing_client_->gpu_timing_);
Reset();
if (!use_elapsed_timer_)
time_stamp_result_ = gpu_timing_client_->gpu_timing_->DoTimeStampQuery();
elapsed_timer_result_ =
gpu_timing_client_->gpu_timing_->BeginElapsedTimeQuery();
timer_state_ = kTimerState_WaitingForEnd;
}
void GPUTimer::End() {
DCHECK(timer_state_ == kTimerState_WaitingForEnd);
DCHECK(elapsed_timer_result_.get());
gpu_timing_client_->gpu_timing_->EndElapsedTimeQuery(elapsed_timer_result_);
timer_state_ = kTimerState_WaitingForResult;
}
bool GPUTimer::IsAvailable() {
if (timer_state_ == kTimerState_WaitingForResult) {
// Elapsed timer are only used during start/end queries and always after
// the timestamp query. Otherwise only the timestamp is used.
scoped_refptr<QueryResult> result =
elapsed_timer_result_.get() ?
elapsed_timer_result_ :
time_stamp_result_;
DCHECK(result.get());
if (result->IsAvailable()) {
timer_state_ = kTimerState_ResultAvailable;
} else {
gpu_timing_client_->gpu_timing_->UpdateQueryResults();
if (result->IsAvailable())
timer_state_ = kTimerState_ResultAvailable;
}
}
return (timer_state_ == kTimerState_ResultAvailable);
}
void GPUTimer::GetStartEndTimestamps(int64_t* start, int64_t* end) {
DCHECK(start && end);
DCHECK(elapsed_timer_result_.get() || time_stamp_result_.get());
DCHECK(IsAvailable());
const int64_t time_stamp = time_stamp_result_.get() ?
time_stamp_result_->GetStartValue() :
elapsed_timer_result_->GetStartValue();
const int64_t elapsed_time = elapsed_timer_result_.get() ?
elapsed_timer_result_->GetDelta() :
0;
*start = time_stamp;
*end = time_stamp + elapsed_time;
}
int64_t GPUTimer::GetDeltaElapsed() {
DCHECK(IsAvailable());
if (elapsed_timer_result_.get())
return elapsed_timer_result_->GetDelta();
return 0;
}
GPUTimer::GPUTimer(scoped_refptr<GPUTimingClient> gpu_timing_client,
bool use_elapsed_timer)
: use_elapsed_timer_(use_elapsed_timer),
gpu_timing_client_(gpu_timing_client) {
}
GPUTimingClient::GPUTimingClient(GPUTimingImpl* gpu_timing)
: gpu_timing_(gpu_timing) {
if (gpu_timing) {
timer_type_ = gpu_timing->GetTimerType();
disjoint_counter_ = gpu_timing_->GetDisjointCount();
}
}
scoped_ptr<GPUTimer> GPUTimingClient::CreateGPUTimer(bool prefer_elapsed_time) {
prefer_elapsed_time |= (timer_type_ == GPUTiming::kTimerTypeEXT);
if (gpu_timing_)
prefer_elapsed_time |= gpu_timing_->IsForceTimeElapsedQuery();
return make_scoped_ptr(new GPUTimer(this, prefer_elapsed_time));
}
bool GPUTimingClient::IsAvailable() {
return timer_type_ != GPUTiming::kTimerTypeInvalid;
}
const char* GPUTimingClient::GetTimerTypeName() const {
switch (timer_type_) {
case GPUTiming::kTimerTypeDisjoint:
return "GL_EXT_disjoint_timer_query";
case GPUTiming::kTimerTypeARB:
return "GL_ARB_timer_query";
case GPUTiming::kTimerTypeEXT:
return "GL_EXT_timer_query";
default:
return "Unknown";
}
}
bool GPUTimingClient::CheckAndResetTimerErrors() {
if (timer_type_ == GPUTiming::kTimerTypeDisjoint) {
DCHECK(gpu_timing_ != nullptr);
const uint32_t total_disjoint_count = gpu_timing_->GetDisjointCount();
const bool disjoint_triggered = total_disjoint_count != disjoint_counter_;
disjoint_counter_ = total_disjoint_count;
return disjoint_triggered;
}
return false;
}
int64_t GPUTimingClient::GetCurrentCPUTime() {
DCHECK(gpu_timing_);
return gpu_timing_->GetCurrentCPUTime();
}
void GPUTimingClient::SetCpuTimeForTesting(
const base::Callback<int64_t(void)>& cpu_time) {
DCHECK(gpu_timing_);
gpu_timing_->SetCpuTimeForTesting(cpu_time);
}
bool GPUTimingClient::IsForceTimeElapsedQuery() {
DCHECK(gpu_timing_);
return gpu_timing_->IsForceTimeElapsedQuery();
}
void GPUTimingClient::ForceTimeElapsedQuery() {
DCHECK(gpu_timing_);
gpu_timing_->ForceTimeElapsedQuery();
}
GPUTimingClient::~GPUTimingClient() {
}
} // namespace gfx
|