summaryrefslogtreecommitdiffstats
path: root/ui/surface/accelerated_surface_transformer_win_unittest.cc
blob: 968720fe068dce1440e6312c3a7d90e603f62193 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <d3d9.h>
#include <random>

#include "base/basictypes.h"
#include "base/file_util.h"
#include "base/hash.h"
#include "base/scoped_native_library.h"
#include "base/strings/stringprintf.h"
#include "base/time/time.h"
#include "base/win/scoped_comptr.h"
#include "base/win/windows_version.h"
#include "media/base/simd/convert_rgb_to_yuv.h"
#include "media/base/yuv_convert.h"
#include "skia/ext/image_operations.h"
#include "testing/gtest/include/gtest/gtest-param-test.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkColor.h"
#include "ui/gfx/codec/png_codec.h"
#include "ui/gfx/rect.h"
#include "ui/surface/accelerated_surface_transformer_win.h"
#include "ui/surface/accelerated_surface_win.h"
#include "ui/surface/d3d9_utils_win.h"

namespace d3d_utils = ui_surface_d3d9_utils;

using base::win::ScopedComPtr;
using std::uniform_int_distribution;

namespace {

// Debug flag, useful when hacking on tests.
const bool kDumpImagesOnFailure = false;

SkBitmap ToSkBitmap(IDirect3DSurface9* surface, bool is_single_channel) {
  D3DLOCKED_RECT locked_rect;
  EXPECT_HRESULT_SUCCEEDED(
      surface->LockRect(&locked_rect, NULL, D3DLOCK_READONLY));

  SkBitmap result;
  gfx::Size size = d3d_utils::GetSize(surface);
  if (is_single_channel)
    size = gfx::Size(size.width() * 4, size.height());
  result.setConfig(SkBitmap::kARGB_8888_Config, size.width(), size.height(),
                   0, kOpaque_SkAlphaType);
  result.allocPixels();
  result.lockPixels();
  for (int y = 0; y < size.height(); ++y) {
    uint8* row8 = reinterpret_cast<uint8*>(locked_rect.pBits) +
        (y * locked_rect.Pitch);
    if (is_single_channel) {
      for (int x = 0; x < size.width(); ++x) {
        *result.getAddr32(x, y) = SkColorSetRGB(row8[x], row8[x], row8[x]);
      }
    } else {
      uint32* row32 = reinterpret_cast<uint32*>(row8);
      for (int x = 0; x < size.width(); ++x) {
        *result.getAddr32(x, y) = row32[x] | 0xFF000000;
      }
    }
  }
  result.unlockPixels();
  result.setImmutable();
  surface->UnlockRect();
  return result;
}

bool WritePNGFile(const SkBitmap& bitmap, const base::FilePath& file_path) {
  std::vector<unsigned char> png_data;
  const bool discard_transparency = true;
  if (gfx::PNGCodec::EncodeBGRASkBitmap(bitmap,
                                        discard_transparency,
                                        &png_data) &&
      base::CreateDirectory(file_path.DirName())) {
    char* data = reinterpret_cast<char*>(&png_data[0]);
    int size = static_cast<int>(png_data.size());
    return file_util::WriteFile(file_path, data, size) == size;
  }
  return false;
}

}  // namespace

// Test fixture for AcceleratedSurfaceTransformer.
//
// This class is parameterized so that it runs only on Vista+. See
// WindowsVersionIfVistaOrBetter() for details on this works.
class AcceleratedSurfaceTransformerTest : public testing::TestWithParam<int> {
 public:
  AcceleratedSurfaceTransformerTest() : color_error_tolerance_(0) {};

  IDirect3DDevice9Ex* device() { return device_.get(); }

  virtual void SetUp() {
    if (!d3d_module_.is_valid()) {
      if (!d3d_utils::LoadD3D9(&d3d_module_)) {
        GTEST_FAIL() << "Could not load d3d9.dll";
        return;
      }
    }
    if (!d3d_utils::CreateDevice(d3d_module_,
                                 D3DDEVTYPE_HAL,
                                 D3DPRESENT_INTERVAL_IMMEDIATE,
                                 device_.Receive())) {
      GTEST_FAIL() << "Could not create Direct3D device.";
      return;
    }

    SeedRandom("default");
  }

  virtual void TearDown() {
    device_ = NULL;
  }

  // Gets a human-readable identifier of the graphics hardware being used,
  // intended for use inside of SCOPED_TRACE().
  std::string GetAdapterInfo() {
    ScopedComPtr<IDirect3D9> d3d;
    EXPECT_HRESULT_SUCCEEDED(device()->GetDirect3D(d3d.Receive()));
    D3DADAPTER_IDENTIFIER9 info;
    EXPECT_HRESULT_SUCCEEDED(d3d->GetAdapterIdentifier(0, 0, &info));
    return base::StringPrintf(
        "Running on graphics hardware: %s", info.Description);
  }

  void SeedRandom(const char* seed) {
    rng_.seed(base::Hash(seed));
    random_dword_.reset();
  }

  // Driver workaround: on an Intel GPU (Mobile Intel 965 Express), it seems
  // necessary to flush between drawing and locking, for the synchronization
  // to behave properly.
  void BeforeLockWorkaround() {
    EXPECT_HRESULT_SUCCEEDED(
        device()->Present(0, 0, 0, 0));
  }

  void WarnOnMissingFeatures(AcceleratedSurfaceTransformer* gpu_ops) {
    // Prints a single warning line if some tests are feature-dependent
    // and the feature is not supported by the current GPU.
    if (!gpu_ops->device_supports_multiple_render_targets()) {
      LOG(WARNING) << "MRT not supported, some tests will be skipped. "
                   << GetAdapterInfo();
    }
  }

  // Locks and fills a surface with a checkerboard pattern where the colors
  // are random but the total image pattern is horizontally and vertically
  // symmetric.
  void FillSymmetricRandomCheckerboard(
      IDirect3DSurface9* lockable_surface,
      const gfx::Size& size,
      int checker_square_size) {

    D3DLOCKED_RECT locked_rect;
    ASSERT_HRESULT_SUCCEEDED(
        lockable_surface->LockRect(&locked_rect, NULL, D3DLOCK_DISCARD));
    DWORD* surface = reinterpret_cast<DWORD*>(locked_rect.pBits);
    ASSERT_EQ(0, locked_rect.Pitch % sizeof(DWORD));
    int pitch = locked_rect.Pitch / sizeof(DWORD);

    for (int y = 0; y < (size.height() + 1) / 2; y += checker_square_size) {
      for (int x = 0; x < (size.width() + 1) / 2; x += checker_square_size) {
        DWORD color = RandomColor();
        int y_limit = std::min(size.height() / 2, y + checker_square_size - 1);
        int x_limit = std::min(size.width() / 2, x + checker_square_size - 1);
        for (int y_lo = y; y_lo <= y_limit; y_lo++) {
          for (int x_lo = x; x_lo <= x_limit; x_lo++) {
            int y_hi = size.height() - 1 - y_lo;
            int x_hi = size.width() - 1 - x_lo;
            surface[x_lo + y_lo*pitch] = color;
            surface[x_lo + y_hi*pitch] = color;
            surface[x_hi + y_lo*pitch] = color;
            surface[x_hi + y_hi*pitch] = color;
          }
        }
      }
    }

    lockable_surface->UnlockRect();
  }

  void FillRandomCheckerboard(
      IDirect3DSurface9* lockable_surface,
      const gfx::Size& size,
      int checker_square_size) {

    D3DLOCKED_RECT locked_rect;
    ASSERT_HRESULT_SUCCEEDED(
        lockable_surface->LockRect(&locked_rect, NULL, D3DLOCK_DISCARD));
    DWORD* surface = reinterpret_cast<DWORD*>(locked_rect.pBits);
    ASSERT_EQ(0, locked_rect.Pitch % sizeof(DWORD));
    int pitch = locked_rect.Pitch / sizeof(DWORD);

    for (int y = 0; y <= size.height(); y += checker_square_size) {
      for (int x = 0; x <= size.width(); x += checker_square_size) {
        DWORD color = RandomColor();
        int y_limit = std::min(size.height(), y + checker_square_size);
        int x_limit = std::min(size.width(), x + checker_square_size);
        for (int square_y = y; square_y < y_limit; square_y++) {
          for (int square_x = x; square_x < x_limit; square_x++) {
            surface[square_x + square_y*pitch] = color;
          }
        }
      }
    }

    lockable_surface->UnlockRect();
  }

  // Approximate color-equality check. Allows for some rounding error.
  bool AssertSameColor(DWORD color_a, DWORD color_b) {
    if (color_a == color_b)
      return true;
    uint8* a = reinterpret_cast<uint8*>(&color_a);
    uint8* b = reinterpret_cast<uint8*>(&color_b);
    int max_error = 0;
    for (int i = 0; i < 4; i++)
      max_error = std::max(max_error,
          std::abs(static_cast<int>(a[i]) - b[i]));

    if (max_error <= color_error_tolerance())
      return true;

    std::string expected_color =
        base::StringPrintf("%3d, %3d, %3d, %3d", a[0], a[1], a[2], a[3]);
    std::string actual_color =
        base::StringPrintf("%3d, %3d, %3d, %3d", b[0], b[1], b[2], b[3]);
    EXPECT_EQ(expected_color, actual_color)
        << "Componentwise color difference was "
        << max_error << "; max allowed is " << color_error_tolerance();

    return false;
  }

bool AssertSameColor(uint8 color_a, uint8 color_b) {
    if (color_a == color_b)
      return true;
    int max_error = std::abs((int) color_a - (int) color_b);
    if (max_error <= color_error_tolerance())
      return true;
    ADD_FAILURE() << "Colors not equal: "
                  << base::StringPrintf("0x%x", color_a)
                  << " vs. " << base::StringPrintf("0x%x", color_b);
    return false;
  }

  // Asserts that an image is symmetric with respect to itself: both
  // horizontally and vertically, within the tolerance of AssertSameColor.
  void AssertSymmetry(IDirect3DSurface9* lockable_surface,
                      const gfx::Size& size) {
    BeforeLockWorkaround();

    D3DLOCKED_RECT locked_rect;
    ASSERT_HRESULT_SUCCEEDED(
        lockable_surface->LockRect(&locked_rect, NULL, D3DLOCK_READONLY));
    ASSERT_EQ(0, locked_rect.Pitch % sizeof(DWORD));
    int pitch = locked_rect.Pitch / sizeof(DWORD);
    DWORD* surface = reinterpret_cast<DWORD*>(locked_rect.pBits);
    for (int y_lo = 0; y_lo < size.height() / 2; y_lo++) {
      int y_hi = size.height() - 1 - y_lo;
      for (int x_lo = 0; x_lo < size.width() / 2; x_lo++) {
        int x_hi = size.width() - 1 - x_lo;
        if (!AssertSameColor(surface[x_lo + y_lo*pitch],
                             surface[x_hi + y_lo*pitch])) {
          lockable_surface->UnlockRect();
          GTEST_FAIL() << "Pixels (" << x_lo << ", " << y_lo << ") vs. "
                       << "(" << x_hi << ", " << y_lo << ")";
        }
        if (!AssertSameColor(surface[x_hi + y_lo*pitch],
                             surface[x_hi + y_hi*pitch])) {
          lockable_surface->UnlockRect();
          GTEST_FAIL() << "Pixels (" << x_hi << ", " << y_lo << ") vs. "
                       << "(" << x_hi << ", " << y_hi << ")";
        }
        if (!AssertSameColor(surface[x_hi + y_hi*pitch],
                             surface[x_lo + y_hi*pitch])) {
          lockable_surface->UnlockRect();
          GTEST_FAIL() << "Pixels (" << x_hi << ", " << y_hi << ") vs. "
                       << "(" << x_lo << ", " << y_hi << ")";
        }
      }
    }
    lockable_surface->UnlockRect();
  }

  // Asserts that the actual image is a bit-identical, vertically mirrored
  // copy of the expected image.
  void AssertIsInvertedCopy(const gfx::Size& size,
                            IDirect3DSurface9* expected,
                            IDirect3DSurface9* actual) {
    BeforeLockWorkaround();

    D3DLOCKED_RECT locked_expected, locked_actual;
    ASSERT_HRESULT_SUCCEEDED(
        expected->LockRect(&locked_expected, NULL, D3DLOCK_READONLY));
    ASSERT_HRESULT_SUCCEEDED(
        actual->LockRect(&locked_actual, NULL, D3DLOCK_READONLY));
    ASSERT_EQ(0, locked_expected.Pitch % sizeof(DWORD));
    int pitch = locked_expected.Pitch / sizeof(DWORD);
    DWORD* expected_image = reinterpret_cast<DWORD*>(locked_expected.pBits);
    DWORD* actual_image = reinterpret_cast<DWORD*>(locked_actual.pBits);
    for (int y = 0; y < size.height(); y++) {
      int y_actual = size.height() - 1 - y;
      for (int x = 0; x < size.width(); ++x)
        if (!AssertSameColor(expected_image[y*pitch + x],
                             actual_image[y_actual*pitch + x])) {
          expected->UnlockRect();
          actual->UnlockRect();
          GTEST_FAIL() << "Pixels (" << x << ", " << y << ") vs. "
                       << "(" << x << ", " << y_actual << ")";
        }
    }
    expected->UnlockRect();
    actual->UnlockRect();
  }

 protected:
  DWORD RandomColor() {
    return random_dword_(rng_);
  }

  void set_color_error_tolerance(int value) {
    color_error_tolerance_ = value;
  }

  int color_error_tolerance() {
    return color_error_tolerance_;
  }

  void DoResizeBilinearTest(AcceleratedSurfaceTransformer* gpu_ops,
                            const gfx::Size& src_size,
                            const gfx::Size& dst_size,
                            int checkerboard_size) {

    SCOPED_TRACE(
        base::StringPrintf(
            "Resizing %dx%d -> %dx%d at checkerboard size of %d",
            src_size.width(), src_size.height(),
            dst_size.width(), dst_size.height(),
            checkerboard_size));

    set_color_error_tolerance(4);

    base::win::ScopedComPtr<IDirect3DSurface9> src, dst;
    ASSERT_TRUE(d3d_utils::CreateOrReuseLockableSurface(
        device(), src_size, &src))
            << "Could not create src render target";
    ASSERT_TRUE(d3d_utils::CreateOrReuseLockableSurface(
        device(), dst_size, &dst))
            << "Could not create dst render target";

    FillSymmetricRandomCheckerboard(src, src_size, checkerboard_size);

    ASSERT_TRUE(gpu_ops->ResizeBilinear(src, gfx::Rect(src_size), dst,
                                        gfx::Rect(dst_size)));

    AssertSymmetry(dst, dst_size);
  }

  void CreateRandomCheckerboardTexture(
      const gfx::Size& size,
      int checkerboard_size,
      base::win::ScopedComPtr<IDirect3DSurface9>* reference_surface,
      base::win::ScopedComPtr<IDirect3DTexture9>* result) {
    base::win::ScopedComPtr<IDirect3DSurface9> dst;
    ASSERT_TRUE(d3d_utils::CreateOrReuseLockableSurface(device(), size,
        reference_surface));
    ASSERT_TRUE(d3d_utils::CreateOrReuseRenderTargetTexture(device(), size,
        result, dst.Receive()));
    FillRandomCheckerboard(*reference_surface, size, checkerboard_size);
    ASSERT_HRESULT_SUCCEEDED(
        device()->StretchRect(
            *reference_surface, NULL, dst, NULL, D3DTEXF_NONE));
  }

  void AssertSame(int width_in_bytes, int height, uint8* reference,
                  IDirect3DSurface9* lockable) {
    BeforeLockWorkaround();

    D3DLOCKED_RECT locked_rect;
    ASSERT_HRESULT_SUCCEEDED(
        lockable->LockRect(&locked_rect, NULL, D3DLOCK_READONLY));
    uint8* actual = reinterpret_cast<uint8*>(locked_rect.pBits);
    for (int y = 0; y < height; ++y) {
      for (int x = 0; x < width_in_bytes; ++x) {
        if (!AssertSameColor(reference[y * width_in_bytes + x],
                             actual[y * locked_rect.Pitch + x])) {
          lockable->UnlockRect();
          GTEST_FAIL() << "At pixel (" << x << ", " << y << ")";
        }
      }
    }
    lockable->UnlockRect();
  }

  void DoCopyInvertedTest(AcceleratedSurfaceTransformer* gpu_ops,
                          const gfx::Size& size) {

    SCOPED_TRACE(base::StringPrintf(
        "CopyInverted @ %dx%d", size.width(), size.height()));

    set_color_error_tolerance(0);

    base::win::ScopedComPtr<IDirect3DSurface9> dst, reference_pattern;
    base::win::ScopedComPtr<IDirect3DTexture9> src;

    CreateRandomCheckerboardTexture(size, 1, &reference_pattern, &src);

    // Alloc a slightly larger image 75% of the time, to test that the
    // viewport is set properly.
    const int kAlign = 4;
    gfx::Size alloc_size((size.width() + kAlign - 1) / kAlign * kAlign,
                         (size.height() + kAlign - 1) / kAlign * kAlign);

    ASSERT_TRUE(d3d_utils::CreateOrReuseLockableSurface(device(), alloc_size,
        &dst)) << "Could not create dst render target.";

    ASSERT_TRUE(gpu_ops->CopyInverted(src, dst, size));
    AssertIsInvertedCopy(size, reference_pattern, dst);
  }


  void DoYUVConversionTest(AcceleratedSurfaceTransformer* gpu_ops,
                           const gfx::Size& src_size,
                           int checkerboard_size) {
    // Test the non-MRT implementation, and the MRT implementation as well
    // (if supported by the device).
    ASSERT_NO_FATAL_FAILURE(
        DoYUVConversionTest(gpu_ops, src_size, src_size,
                            checkerboard_size, false));
    if (gpu_ops->device_supports_multiple_render_targets()) {
      ASSERT_NO_FATAL_FAILURE(
          DoYUVConversionTest(gpu_ops, src_size, src_size,
                              checkerboard_size, true));
    }
  }

  void DoYUVConversionScaleTest(AcceleratedSurfaceTransformer* gpu_ops,
                                const gfx::Size& src_size,
                                const gfx::Size& dst_size) {
    // Test the non-MRT implementation, and the MRT implementation as well
    // (if supported by the device).
    if (gpu_ops->device_supports_multiple_render_targets()) {
      ASSERT_NO_FATAL_FAILURE(
          DoYUVConversionTest(gpu_ops, src_size, dst_size, 4, true));
    }
    ASSERT_NO_FATAL_FAILURE(
        DoYUVConversionTest(gpu_ops, src_size, dst_size, 4, false));
  }

  void DoYUVConversionTest(AcceleratedSurfaceTransformer* gpu_ops,
                           const gfx::Size& src_size,
                           const gfx::Size& dst_size,
                           int checkerboard_size,
                           boolean use_multi_render_targets) {
    SCOPED_TRACE(
        base::StringPrintf(
            "YUV Converting %dx%d at checkerboard size of %d; MRT %s",
            src_size.width(), src_size.height(),
            checkerboard_size,
            use_multi_render_targets ? "enabled" : "disabled"));


    base::win::ScopedComPtr<IDirect3DTexture9> src;
    base::win::ScopedComPtr<IDirect3DSurface9> reference;
    base::win::ScopedComPtr<IDirect3DSurface9> dst_y, dst_u, dst_v;

    // TODO(ncarter): Use a better error metric that measures aggregate error
    // rather than simply max error. There seems to be slightly more error at
    // higher resolutions, maybe due to precision issues during rasterization
    // (or maybe more pixels = more test trials). Results are usually to an
    // error of 1, but we must use a tolerance of 3.
    set_color_error_tolerance(3);
    CreateRandomCheckerboardTexture(src_size, checkerboard_size, &reference,
                                    &src);

    gfx::Size packed_y_size, packed_uv_size;

    ASSERT_TRUE(gpu_ops->AllocYUVBuffers(dst_size,
                                         &packed_y_size,
                                         &packed_uv_size,
                                         dst_y.Receive(),
                                         dst_u.Receive(),
                                         dst_v.Receive()));

    // Actually do the conversion.
    if (use_multi_render_targets) {
      ASSERT_TRUE(gpu_ops->TransformRGBToYV12_MRT(src,
                                                  dst_size,
                                                  packed_y_size,
                                                  packed_uv_size,
                                                  dst_y,
                                                  dst_u,
                                                  dst_v));
    } else {
      ASSERT_TRUE(gpu_ops->TransformRGBToYV12_WithoutMRT(src,
                                                         dst_size,
                                                         packed_y_size,
                                                         packed_uv_size,
                                                         dst_y,
                                                         dst_u,
                                                         dst_v));
    }

    // UV size (in bytes/samples) is half, rounded up.
    gfx::Size uv_size((dst_size.width() + 1) / 2,
                      (dst_size.height() + 1) / 2);

    // Generate a reference bitmap by calling a software implementation.
    SkBitmap reference_rgb = ToSkBitmap(reference, false);
    SkBitmap reference_rgb_scaled;
    if (dst_size == src_size) {
      reference_rgb_scaled = reference_rgb;
    } else {
      // We'll call Copy to do the bilinear scaling if needed.
      base::win::ScopedComPtr<IDirect3DSurface9> reference_scaled;
      ASSERT_TRUE(
          d3d_utils::CreateOrReuseLockableSurface(
              device(), dst_size, &reference_scaled));
      ASSERT_TRUE(gpu_ops->Copy(src, reference_scaled, dst_size));
      BeforeLockWorkaround();
      reference_rgb_scaled = ToSkBitmap(reference_scaled, false);
    }

    scoped_ptr<uint8[]> reference_y(new uint8[dst_size.GetArea()]);
    scoped_ptr<uint8[]> reference_u(new uint8[uv_size.GetArea()]);
    scoped_ptr<uint8[]> reference_v(new uint8[uv_size.GetArea()]);
    reference_rgb_scaled.lockPixels();
    media::ConvertRGB32ToYUV_SSE2_Reference(
        reinterpret_cast<uint8*>(reference_rgb_scaled.getAddr32(0, 0)),
        &reference_y[0],
        &reference_u[0],
        &reference_v[0],
        dst_size.width(),
        dst_size.height(),
        reference_rgb_scaled.rowBytes(),
        dst_size.width(),
        uv_size.width());
    reference_rgb_scaled.unlockPixels();

    // Check for equality of the reference and the actual.
    AssertSame(dst_size.width(), dst_size.height(), &reference_y[0], dst_y);
    AssertSame(uv_size.width(), uv_size.height(), &reference_u[0], dst_u);
    AssertSame(uv_size.width(), uv_size.height(), &reference_v[0], dst_v);

    if (kDumpImagesOnFailure && HasFatalFailure()) {
      // Note that this will dump the full u and v buffers, including
      // extra columns added due to packing. That means up to 7 extra
      // columns for uv, and up to 3 extra columns for y.
      WritePNGFile(reference_rgb,
                   base::FilePath(FILE_PATH_LITERAL("test_fail_src.png")));
      WritePNGFile(reference_rgb_scaled,
                   base::FilePath(
                       FILE_PATH_LITERAL("test_fail_src_scaled.png")));
      WritePNGFile(ToSkBitmap(dst_y, true),
                   base::FilePath(FILE_PATH_LITERAL("test_fail_y.png")));
      WritePNGFile(ToSkBitmap(dst_u, true),
                   base::FilePath(FILE_PATH_LITERAL("test_fail_u.png")));
      WritePNGFile(ToSkBitmap(dst_v, true),
                   base::FilePath(FILE_PATH_LITERAL("test_fail_v.png")));
    }
  }

  int color_error_tolerance_;
  uniform_int_distribution<DWORD> random_dword_;
  std::mt19937 rng_;
  base::ScopedNativeLibrary d3d_module_;
  base::win::ScopedComPtr<IDirect3DDevice9Ex> device_;
};

// Fails on some bots because Direct3D isn't allowed.
TEST_P(AcceleratedSurfaceTransformerTest, Init) {
  SCOPED_TRACE(GetAdapterInfo());
  AcceleratedSurfaceTransformer gpu_ops;
  ASSERT_TRUE(gpu_ops.Init(device()));

  WarnOnMissingFeatures(&gpu_ops);
};

// Fails on some bots because Direct3D isn't allowed.
TEST_P(AcceleratedSurfaceTransformerTest, TestConsistentRandom) {
  // This behavior should be the same for every execution on every machine.
  // Otherwise tests might be flaky and impossible to debug.
  SeedRandom("AcceleratedSurfaceTransformerTest.TestConsistentRandom");
  ASSERT_EQ(2922058934, RandomColor());

  SeedRandom("AcceleratedSurfaceTransformerTest.TestConsistentRandom");
  ASSERT_EQ(2922058934, RandomColor());
  ASSERT_EQ(4050239976, RandomColor());

  SeedRandom("DifferentSeed");
  ASSERT_EQ(3904108833, RandomColor());
}

// Fails on some bots because Direct3D isn't allowed.
TEST_P(AcceleratedSurfaceTransformerTest, CopyInverted) {
  // This behavior should be the same for every execution on every machine.
  // Otherwise tests might be flaky and impossible to debug.
  SCOPED_TRACE(GetAdapterInfo());
  SeedRandom("CopyInverted");

  AcceleratedSurfaceTransformer t;
  ASSERT_TRUE(t.Init(device()));

  uniform_int_distribution<int> size(1, 512);

  for (int i = 0; i < 100; ++i) {
    ASSERT_NO_FATAL_FAILURE(
        DoCopyInvertedTest(&t, gfx::Size(size(rng_), size(rng_))))
            << "At iteration " << i;
  }
}

// Fails on some bots because Direct3D isn't allowed.
// Fails on other bots because of ResizeBilinear symmetry failures.
// Should pass, at least, on NVIDIA Quadro 600.
TEST_P(AcceleratedSurfaceTransformerTest, MixedOperations) {
  SCOPED_TRACE(GetAdapterInfo());
  SeedRandom("MixedOperations");

  AcceleratedSurfaceTransformer t;
  ASSERT_TRUE(t.Init(device()));

  ASSERT_NO_FATAL_FAILURE(
      DoResizeBilinearTest(&t, gfx::Size(256, 256), gfx::Size(255, 255), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoResizeBilinearTest(&t, gfx::Size(256, 256), gfx::Size(255, 255), 2));
  ASSERT_NO_FATAL_FAILURE(
      DoCopyInvertedTest(&t, gfx::Size(20, 107)));
  ASSERT_NO_FATAL_FAILURE(
      DoResizeBilinearTest(&t, gfx::Size(256, 256), gfx::Size(255, 255), 5));
  ASSERT_NO_FATAL_FAILURE(
      DoResizeBilinearTest(&t, gfx::Size(256, 256), gfx::Size(64, 64), 5));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&t, gfx::Size(128, 128), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoResizeBilinearTest(&t, gfx::Size(255, 255), gfx::Size(3, 3), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoCopyInvertedTest(&t, gfx::Size(1412, 124)));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&t, gfx::Size(100, 200), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoResizeBilinearTest(&t, gfx::Size(255, 255), gfx::Size(257, 257), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoResizeBilinearTest(&t, gfx::Size(255, 255), gfx::Size(257, 257), 2));

  ASSERT_NO_FATAL_FAILURE(
      DoCopyInvertedTest(&t, gfx::Size(1512, 7)));
  ASSERT_NO_FATAL_FAILURE(
      DoResizeBilinearTest(&t, gfx::Size(255, 255), gfx::Size(257, 257), 5));
  ASSERT_NO_FATAL_FAILURE(
      DoResizeBilinearTest(&t, gfx::Size(150, 256), gfx::Size(126, 256), 8));
  ASSERT_NO_FATAL_FAILURE(
      DoCopyInvertedTest(&t, gfx::Size(1521, 3)));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&t, gfx::Size(140, 181), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoResizeBilinearTest(&t, gfx::Size(150, 256), gfx::Size(126, 256), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoCopyInvertedTest(&t, gfx::Size(33, 712)));
  ASSERT_NO_FATAL_FAILURE(
      DoResizeBilinearTest(&t, gfx::Size(150, 256), gfx::Size(126, 8), 8));
  ASSERT_NO_FATAL_FAILURE(
      DoCopyInvertedTest(&t, gfx::Size(33, 2)));
  ASSERT_NO_FATAL_FAILURE(
      DoResizeBilinearTest(&t, gfx::Size(200, 256), gfx::Size(126, 8), 8));
}

// Tests ResizeBilinear with 16K wide/hight src and dst surfaces.
//
// Fails on some bots because Direct3D isn't allowed.
// Should pass, at least, on NVIDIA Quadro 600.
TEST_P(AcceleratedSurfaceTransformerTest, LargeSurfaces) {
  SCOPED_TRACE(GetAdapterInfo());
  SeedRandom("LargeSurfaces");

  AcceleratedSurfaceTransformer gpu_ops;
  ASSERT_TRUE(gpu_ops.Init(device()));

  D3DCAPS9 caps;
  ASSERT_HRESULT_SUCCEEDED(
      device()->GetDeviceCaps(&caps));

  SCOPED_TRACE(base::StringPrintf(
     "max texture size: %dx%d, max texture aspect: %d",
      caps.MaxTextureWidth, caps.MaxTextureHeight, caps.MaxTextureAspectRatio));

  const int w = caps.MaxTextureWidth;
  const int h = caps.MaxTextureHeight;
  const int lo = 256;

  ASSERT_NO_FATAL_FAILURE(
      DoResizeBilinearTest(&gpu_ops, gfx::Size(w, lo), gfx::Size(lo, lo), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoResizeBilinearTest(&gpu_ops, gfx::Size(lo, h), gfx::Size(lo, lo), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoResizeBilinearTest(&gpu_ops, gfx::Size(lo, lo), gfx::Size(w, lo), lo));
  ASSERT_NO_FATAL_FAILURE(
      DoResizeBilinearTest(&gpu_ops, gfx::Size(lo, lo), gfx::Size(lo, h), lo));
  ASSERT_NO_FATAL_FAILURE(
      DoCopyInvertedTest(&gpu_ops, gfx::Size(w, lo)));
  ASSERT_NO_FATAL_FAILURE(
      DoCopyInvertedTest(&gpu_ops, gfx::Size(lo, h)));

  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(w, lo), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(lo, h), 1));

}

// Exercises ResizeBilinear with random minification cases where the
// aspect ratio does not change.
//
// Fails on some bots because Direct3D isn't allowed.
// Fails on other bots because of StretchRect symmetry failures.
// Should pass, at least, on NVIDIA Quadro 600.
TEST_P(AcceleratedSurfaceTransformerTest, MinifyUniform) {
  SCOPED_TRACE(GetAdapterInfo());
  SeedRandom("MinifyUniform");

  AcceleratedSurfaceTransformer gpu_ops;
  ASSERT_TRUE(gpu_ops.Init(device()));

  const int dims[] = {21, 63, 64, 65, 99, 127, 128, 129, 192, 255, 256, 257};
  const int checkerboards[] = {1, 2, 3, 9};
  uniform_int_distribution<int> dim(0, arraysize(dims) - 1);
  uniform_int_distribution<int> checkerboard(0, arraysize(checkerboards) - 1);

  for (int i = 0; i < 300; i++) {
    // Widths are picked so that dst is smaller than src.
    int dst_width = dims[dim(rng_)];
    int src_width = dims[dim(rng_)];
    if (src_width < dst_width)
      std::swap(dst_width, src_width);

    // src_height is picked to preserve aspect ratio.
    int dst_height = dims[dim(rng_)];
    int src_height = static_cast<int>(
        static_cast<int64>(src_width) * dst_height / dst_width);

    int checkerboard_size = checkerboards[checkerboard(rng_)];

    ASSERT_NO_FATAL_FAILURE(
        DoResizeBilinearTest(&gpu_ops,
            gfx::Size(src_width, src_height),  // Src size (larger)
            gfx::Size(dst_width, dst_height),  // Dst size (smaller)
            checkerboard_size)) << "Failed on iteration " << i;
  }
};

// Exercises ResizeBilinear with random magnification cases where the
// aspect ratio does not change.
//
// This test relies on an assertion that resizing preserves symmetry in the
// image, but for the current implementation of ResizeBilinear, this does not
// seem to be true (fails on NVIDIA Quadro 600; passes on
// Intel Mobile 965 Express)
TEST_P(AcceleratedSurfaceTransformerTest, DISABLED_MagnifyUniform) {
  SCOPED_TRACE(GetAdapterInfo());
  SeedRandom("MagnifyUniform");

  AcceleratedSurfaceTransformer gpu_ops;
  ASSERT_TRUE(gpu_ops.Init(device()));

  const int dims[] = {63, 64, 65, 99, 127, 128, 129, 192, 255, 256, 257};
  const int checkerboards[] = {1, 2, 3, 9};
  uniform_int_distribution<int> dim(0, arraysize(dims) - 1);
  uniform_int_distribution<int> checkerboard(0, arraysize(checkerboards) - 1);

  for (int i = 0; i < 50; i++) {
    // Widths are picked so that src is smaller than dst.
    int dst_width = dims[dim(rng_)];
    int src_width = dims[dim(rng_)];
    if (dst_width < src_width)
      std::swap(src_width, dst_width);

    int dst_height = dims[dim(rng_)];
    int src_height = static_cast<int>(
        static_cast<int64>(src_width) * dst_height / dst_width);

    int checkerboard_size = checkerboards[checkerboard(rng_)];

    ASSERT_NO_FATAL_FAILURE(
        DoResizeBilinearTest(&gpu_ops,
            gfx::Size(src_width, src_height),  // Src size (smaller)
            gfx::Size(dst_width, dst_height),  // Dst size (larger)
            checkerboard_size)) << "Failed on iteration " << i;
  }
};

TEST_P(AcceleratedSurfaceTransformerTest, RGBtoYUV) {
  SeedRandom("RGBtoYUV");

  AcceleratedSurfaceTransformer gpu_ops;
  ASSERT_TRUE(gpu_ops.Init(device()));

  // Start with some easy-to-debug cases. A checkerboard size of 1 is the
  // best test, but larger checkerboard sizes give more insight into where
  // a bug might be.
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(32, 32), 4));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(32, 32), 2));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(32, 32), 3));

  // All cases of width (mod 8) and height (mod 8), using 1x1 checkerboard.
  for (int w = 32; w < 40; ++w) {
    for (int h = 32; h < 40; ++h) {
      ASSERT_NO_FATAL_FAILURE(
          DoYUVConversionTest(&gpu_ops, gfx::Size(w, h), 1));
    }
  }

  // All the very small sizes which require the most shifting in the
  // texture coordinates when doing alignment.
  for (int w = 1; w <= 9; ++w) {
    for (int h = 1; h <= 9; ++h) {
      ASSERT_NO_FATAL_FAILURE(
          DoYUVConversionTest(&gpu_ops, gfx::Size(w, h), 1));
    }
  }

  // Random medium dimensions.
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(10, 142), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(124, 333), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(853, 225), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(231, 412), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(512, 128), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(1024, 768), 1));

  // Common video/monitor resolutions
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(800, 768), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(1024, 768), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(1280, 720), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(1280, 720), 2));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(1920, 1080), 1));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(1920, 1080), 2));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionTest(&gpu_ops, gfx::Size(2048, 1536), 1));
}

TEST_P(AcceleratedSurfaceTransformerTest, RGBtoYUVScaled) {
  SeedRandom("RGBtoYUVScaled");

  AcceleratedSurfaceTransformer gpu_ops;
  ASSERT_TRUE(gpu_ops.Init(device()));

  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionScaleTest(&gpu_ops, gfx::Size(32, 32), gfx::Size(64, 64)));

  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionScaleTest(&gpu_ops, gfx::Size(32, 32), gfx::Size(16, 16)));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionScaleTest(&gpu_ops, gfx::Size(32, 32), gfx::Size(24, 24)));
  ASSERT_NO_FATAL_FAILURE(
      DoYUVConversionScaleTest(&gpu_ops, gfx::Size(32, 32), gfx::Size(48, 48)));
}

namespace {

// Used to suppress test on Windows versions prior to Vista.
std::vector<int> WindowsVersionIfVistaOrBetter() {
  std::vector<int> result;
  if (base::win::GetVersion() >= base::win::VERSION_VISTA) {
    result.push_back(base::win::GetVersion());
  }
  return result;
}

}  // namespace

INSTANTIATE_TEST_CASE_P(VistaAndUp,
                        AcceleratedSurfaceTransformerTest,
                        ::testing::ValuesIn(WindowsVersionIfVistaOrBetter()));