summaryrefslogtreecommitdiffstats
path: root/src/crypto/cipher/e_tls.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/cipher/e_tls.c')
-rw-r--r--src/crypto/cipher/e_tls.c611
1 files changed, 611 insertions, 0 deletions
diff --git a/src/crypto/cipher/e_tls.c b/src/crypto/cipher/e_tls.c
new file mode 100644
index 0000000..8ac1aae
--- /dev/null
+++ b/src/crypto/cipher/e_tls.c
@@ -0,0 +1,611 @@
+/* Copyright (c) 2014, Google Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+ * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
+ * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
+ * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
+
+#include <assert.h>
+#include <limits.h>
+#include <string.h>
+
+#include <openssl/aead.h>
+#include <openssl/cipher.h>
+#include <openssl/err.h>
+#include <openssl/hmac.h>
+#include <openssl/mem.h>
+#include <openssl/sha.h>
+
+#include "../crypto/internal.h"
+#include "internal.h"
+
+
+typedef struct {
+ EVP_CIPHER_CTX cipher_ctx;
+ HMAC_CTX hmac_ctx;
+ /* mac_key is the portion of the key used for the MAC. It is retained
+ * separately for the constant-time CBC code. */
+ uint8_t mac_key[EVP_MAX_MD_SIZE];
+ uint8_t mac_key_len;
+ /* enc_key is the portion of the key used for the stream or block
+ * cipher. It is retained separately to allow the EVP_CIPHER_CTX to be
+ * initialized once the direction is known. */
+ uint8_t enc_key[EVP_MAX_KEY_LENGTH];
+ uint8_t enc_key_len;
+ /* iv is the portion of the key used for the fixed IV. It is retained
+ * separately to allow the EVP_CIPHER_CTX to be initialized once the direction
+ * is known. */
+ uint8_t iv[EVP_MAX_IV_LENGTH];
+ uint8_t iv_len;
+ /* implicit_iv is one iff this is a pre-TLS-1.1 CBC cipher without an explicit
+ * IV. */
+ char implicit_iv;
+ char initialized;
+} AEAD_TLS_CTX;
+
+
+static void aead_tls_cleanup(EVP_AEAD_CTX *ctx) {
+ AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state;
+ EVP_CIPHER_CTX_cleanup(&tls_ctx->cipher_ctx);
+ HMAC_CTX_cleanup(&tls_ctx->hmac_ctx);
+ OPENSSL_cleanse(&tls_ctx->mac_key, sizeof(tls_ctx->mac_key));
+ OPENSSL_cleanse(&tls_ctx->enc_key, sizeof(tls_ctx->enc_key));
+ OPENSSL_cleanse(&tls_ctx->iv, sizeof(tls_ctx->iv));
+ OPENSSL_free(tls_ctx);
+ ctx->aead_state = NULL;
+}
+
+static int aead_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len,
+ size_t tag_len, const EVP_CIPHER *cipher,
+ const EVP_MD *md, char implicit_iv) {
+ if (tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH &&
+ tag_len != EVP_MD_size(md)) {
+ OPENSSL_PUT_ERROR(CIPHER, aead_tls_init, CIPHER_R_UNSUPPORTED_TAG_SIZE);
+ return 0;
+ }
+
+ if (key_len != EVP_AEAD_key_length(ctx->aead)) {
+ OPENSSL_PUT_ERROR(CIPHER, aead_tls_init, CIPHER_R_BAD_KEY_LENGTH);
+ return 0;
+ }
+
+ size_t mac_key_len = EVP_MD_size(md);
+ size_t enc_key_len = EVP_CIPHER_key_length(cipher);
+ size_t iv_len = implicit_iv ? EVP_CIPHER_iv_length(cipher) : 0;
+ assert(mac_key_len + enc_key_len + iv_len == key_len);
+ assert(mac_key_len < 256);
+ assert(enc_key_len < 256);
+ assert(iv_len < 256);
+ /* Although EVP_rc4() is a variable-length cipher, the default key size is
+ * correct for TLS. */
+
+ AEAD_TLS_CTX *tls_ctx = OPENSSL_malloc(sizeof(AEAD_TLS_CTX));
+ if (tls_ctx == NULL) {
+ OPENSSL_PUT_ERROR(CIPHER, aead_tls_init, ERR_R_MALLOC_FAILURE);
+ return 0;
+ }
+ EVP_CIPHER_CTX_init(&tls_ctx->cipher_ctx);
+ HMAC_CTX_init(&tls_ctx->hmac_ctx);
+ memcpy(tls_ctx->mac_key, key, mac_key_len);
+ tls_ctx->mac_key_len = (uint8_t)mac_key_len;
+ memcpy(tls_ctx->enc_key, &key[mac_key_len], enc_key_len);
+ tls_ctx->enc_key_len = (uint8_t)enc_key_len;
+ memcpy(tls_ctx->iv, &key[mac_key_len + enc_key_len], iv_len);
+ tls_ctx->iv_len = (uint8_t)iv_len;
+ tls_ctx->implicit_iv = implicit_iv;
+ tls_ctx->initialized = 0;
+
+ ctx->aead_state = tls_ctx;
+ if (!EVP_CipherInit_ex(&tls_ctx->cipher_ctx, cipher, NULL, NULL, NULL, 0) ||
+ !HMAC_Init_ex(&tls_ctx->hmac_ctx, key, mac_key_len, md, NULL)) {
+ aead_tls_cleanup(ctx);
+ return 0;
+ }
+ EVP_CIPHER_CTX_set_padding(&tls_ctx->cipher_ctx, 0);
+
+ return 1;
+}
+
+/* aead_tls_ensure_cipher_init initializes |tls_ctx| for encryption (or
+ * decryption, if |encrypt| is zero). If it has already been initialized, it
+ * ensures the direction matches and fails otherwise. It returns one on success
+ * and zero on failure.
+ *
+ * Note that, unlike normal AEADs, legacy TLS AEADs may not be used concurrently
+ * due to this (and bulk-cipher-internal) statefulness. */
+static int aead_tls_ensure_cipher_init(AEAD_TLS_CTX *tls_ctx, int encrypt) {
+ if (!tls_ctx->initialized) {
+ /* Finish initializing the EVP_CIPHER_CTX now that the direction is
+ * known. */
+ if (!EVP_CipherInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, tls_ctx->enc_key,
+ tls_ctx->implicit_iv ? tls_ctx->iv : NULL,
+ encrypt)) {
+ return 0;
+ }
+ tls_ctx->initialized = 1;
+ } else if (tls_ctx->cipher_ctx.encrypt != encrypt) {
+ /* Unlike a normal AEAD, using a TLS AEAD once freezes the direction. */
+ OPENSSL_PUT_ERROR(CIPHER, aead_tls_ensure_cipher_init,
+ CIPHER_R_INVALID_OPERATION);
+ return 0;
+ }
+ return 1;
+}
+
+static int aead_tls_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
+ size_t *out_len, size_t max_out_len,
+ const uint8_t *nonce, size_t nonce_len,
+ const uint8_t *in, size_t in_len,
+ const uint8_t *ad, size_t ad_len) {
+ AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state;
+ size_t total = 0;
+
+ if (in_len + EVP_AEAD_max_overhead(ctx->aead) < in_len ||
+ in_len > INT_MAX) {
+ /* EVP_CIPHER takes int as input. */
+ OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_TOO_LARGE);
+ return 0;
+ }
+
+ if (max_out_len < in_len + EVP_AEAD_max_overhead(ctx->aead)) {
+ OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_BUFFER_TOO_SMALL);
+ return 0;
+ }
+
+ if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
+ OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_INVALID_NONCE_SIZE);
+ return 0;
+ }
+
+ if (ad_len != 13 - 2 /* length bytes */) {
+ OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_INVALID_AD_SIZE);
+ return 0;
+ }
+
+ if (!aead_tls_ensure_cipher_init(tls_ctx, 1)) {
+ return 0;
+ }
+
+ /* To allow for CBC mode which changes cipher length, |ad| doesn't include the
+ * length for legacy ciphers. */
+ uint8_t ad_extra[2];
+ ad_extra[0] = (uint8_t)(in_len >> 8);
+ ad_extra[1] = (uint8_t)(in_len & 0xff);
+
+ /* Compute the MAC. This must be first in case the operation is being done
+ * in-place. */
+ uint8_t mac[EVP_MAX_MD_SIZE];
+ unsigned mac_len;
+ HMAC_CTX hmac_ctx;
+ HMAC_CTX_init(&hmac_ctx);
+ if (!HMAC_CTX_copy_ex(&hmac_ctx, &tls_ctx->hmac_ctx) ||
+ !HMAC_Update(&hmac_ctx, ad, ad_len) ||
+ !HMAC_Update(&hmac_ctx, ad_extra, sizeof(ad_extra)) ||
+ !HMAC_Update(&hmac_ctx, in, in_len) ||
+ !HMAC_Final(&hmac_ctx, mac, &mac_len)) {
+ HMAC_CTX_cleanup(&hmac_ctx);
+ return 0;
+ }
+ HMAC_CTX_cleanup(&hmac_ctx);
+
+ /* Configure the explicit IV. */
+ if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
+ !tls_ctx->implicit_iv &&
+ !EVP_EncryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) {
+ return 0;
+ }
+
+ /* Encrypt the input. */
+ int len;
+ if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out, &len, in,
+ (int)in_len)) {
+ return 0;
+ }
+ total = len;
+
+ /* Feed the MAC into the cipher. */
+ if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out + total, &len, mac,
+ (int)mac_len)) {
+ return 0;
+ }
+ total += len;
+
+ unsigned block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx);
+ if (block_size > 1) {
+ assert(block_size <= 256);
+ assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE);
+
+ /* Compute padding and feed that into the cipher. */
+ uint8_t padding[256];
+ unsigned padding_len = block_size - ((in_len + mac_len) % block_size);
+ memset(padding, padding_len - 1, padding_len);
+ if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out + total, &len, padding,
+ (int)padding_len)) {
+ return 0;
+ }
+ total += len;
+ }
+
+ if (!EVP_EncryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) {
+ return 0;
+ }
+ total += len;
+
+ *out_len = total;
+ return 1;
+}
+
+static int aead_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
+ size_t *out_len, size_t max_out_len,
+ const uint8_t *nonce, size_t nonce_len,
+ const uint8_t *in, size_t in_len,
+ const uint8_t *ad, size_t ad_len) {
+ AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state;
+
+ if (in_len < HMAC_size(&tls_ctx->hmac_ctx)) {
+ OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT);
+ return 0;
+ }
+
+ if (max_out_len < in_len) {
+ /* This requires that the caller provide space for the MAC, even though it
+ * will always be removed on return. */
+ OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BUFFER_TOO_SMALL);
+ return 0;
+ }
+
+ if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
+ OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_INVALID_NONCE_SIZE);
+ return 0;
+ }
+
+ if (ad_len != 13 - 2 /* length bytes */) {
+ OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_INVALID_AD_SIZE);
+ return 0;
+ }
+
+ if (in_len > INT_MAX) {
+ /* EVP_CIPHER takes int as input. */
+ OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_TOO_LARGE);
+ return 0;
+ }
+
+ if (!aead_tls_ensure_cipher_init(tls_ctx, 0)) {
+ return 0;
+ }
+
+ /* Configure the explicit IV. */
+ if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
+ !tls_ctx->implicit_iv &&
+ !EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) {
+ return 0;
+ }
+
+ /* Decrypt to get the plaintext + MAC + padding. */
+ size_t total = 0;
+ int len;
+ if (!EVP_DecryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) {
+ return 0;
+ }
+ total += len;
+ if (!EVP_DecryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) {
+ return 0;
+ }
+ total += len;
+ assert(total == in_len);
+
+ /* Remove CBC padding. Code from here on is timing-sensitive with respect to
+ * |padding_ok| and |data_plus_mac_len| for CBC ciphers. */
+ int padding_ok;
+ unsigned data_plus_mac_len, data_len;
+ if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE) {
+ padding_ok = EVP_tls_cbc_remove_padding(
+ &data_plus_mac_len, out, total,
+ EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx),
+ (unsigned)HMAC_size(&tls_ctx->hmac_ctx));
+ /* Publicly invalid. This can be rejected in non-constant time. */
+ if (padding_ok == 0) {
+ OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT);
+ return 0;
+ }
+ } else {
+ padding_ok = 1;
+ data_plus_mac_len = total;
+ /* |data_plus_mac_len| = |total| = |in_len| at this point. |in_len| has
+ * already been checked against the MAC size at the top of the function. */
+ assert(data_plus_mac_len >= HMAC_size(&tls_ctx->hmac_ctx));
+ }
+ data_len = data_plus_mac_len - HMAC_size(&tls_ctx->hmac_ctx);
+
+ /* At this point, |padding_ok| is 1 or -1. If 1, the padding is valid and the
+ * first |data_plus_mac_size| bytes after |out| are the plaintext and
+ * MAC. Either way, |data_plus_mac_size| is large enough to extract a MAC. */
+
+ /* To allow for CBC mode which changes cipher length, |ad| doesn't include the
+ * length for legacy ciphers. */
+ uint8_t ad_fixed[13];
+ memcpy(ad_fixed, ad, 11);
+ ad_fixed[11] = (uint8_t)(data_len >> 8);
+ ad_fixed[12] = (uint8_t)(data_len & 0xff);
+ ad_len += 2;
+
+ /* Compute the MAC and extract the one in the record. */
+ uint8_t mac[EVP_MAX_MD_SIZE];
+ size_t mac_len;
+ uint8_t record_mac_tmp[EVP_MAX_MD_SIZE];
+ uint8_t *record_mac;
+ if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
+ EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx.md)) {
+ if (!EVP_tls_cbc_digest_record(tls_ctx->hmac_ctx.md, mac, &mac_len,
+ ad_fixed, out, data_plus_mac_len, total,
+ tls_ctx->mac_key, tls_ctx->mac_key_len)) {
+ OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT);
+ return 0;
+ }
+ assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx));
+
+ record_mac = record_mac_tmp;
+ EVP_tls_cbc_copy_mac(record_mac, mac_len, out, data_plus_mac_len, total);
+ } else {
+ /* We should support the constant-time path for all CBC-mode ciphers
+ * implemented. */
+ assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE);
+
+ HMAC_CTX hmac_ctx;
+ HMAC_CTX_init(&hmac_ctx);
+ unsigned mac_len_u;
+ if (!HMAC_CTX_copy_ex(&hmac_ctx, &tls_ctx->hmac_ctx) ||
+ !HMAC_Update(&hmac_ctx, ad_fixed, ad_len) ||
+ !HMAC_Update(&hmac_ctx, out, data_len) ||
+ !HMAC_Final(&hmac_ctx, mac, &mac_len_u)) {
+ HMAC_CTX_cleanup(&hmac_ctx);
+ return 0;
+ }
+ mac_len = mac_len_u;
+ HMAC_CTX_cleanup(&hmac_ctx);
+
+ assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx));
+ record_mac = &out[data_len];
+ }
+
+ /* Perform the MAC check and the padding check in constant-time. It should be
+ * safe to simply perform the padding check first, but it would not be under a
+ * different choice of MAC location on padding failure. See
+ * EVP_tls_cbc_remove_padding. */
+ unsigned good = constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len),
+ 0);
+ good &= constant_time_eq_int(padding_ok, 1);
+ if (!good) {
+ OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT);
+ return 0;
+ }
+
+ /* End of timing-sensitive code. */
+
+ *out_len = data_len;
+ return 1;
+}
+
+static int aead_rc4_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
+ size_t key_len, size_t tag_len) {
+ return aead_tls_init(ctx, key, key_len, tag_len, EVP_rc4(), EVP_sha1(), 0);
+}
+
+static int aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
+ size_t key_len, size_t tag_len) {
+ return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_128_cbc(),
+ EVP_sha1(), 0);
+}
+
+static int aead_aes_128_cbc_sha1_tls_implicit_iv_init(EVP_AEAD_CTX *ctx,
+ const uint8_t *key,
+ size_t key_len,
+ size_t tag_len) {
+ return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_128_cbc(),
+ EVP_sha1(), 1);
+}
+
+static int aead_aes_128_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx,
+ const uint8_t *key, size_t key_len,
+ size_t tag_len) {
+ return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_128_cbc(),
+ EVP_sha256(), 0);
+}
+
+static int aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
+ size_t key_len, size_t tag_len) {
+ return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_256_cbc(),
+ EVP_sha1(), 0);
+}
+
+static int aead_aes_256_cbc_sha1_tls_implicit_iv_init(EVP_AEAD_CTX *ctx,
+ const uint8_t *key,
+ size_t key_len,
+ size_t tag_len) {
+ return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_256_cbc(),
+ EVP_sha1(), 1);
+}
+
+static int aead_aes_256_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx,
+ const uint8_t *key, size_t key_len,
+ size_t tag_len) {
+ return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_256_cbc(),
+ EVP_sha256(), 0);
+}
+
+static int aead_aes_256_cbc_sha384_tls_init(EVP_AEAD_CTX *ctx,
+ const uint8_t *key, size_t key_len,
+ size_t tag_len) {
+ return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_256_cbc(),
+ EVP_sha384(), 0);
+}
+
+static int aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx,
+ const uint8_t *key, size_t key_len,
+ size_t tag_len) {
+ return aead_tls_init(ctx, key, key_len, tag_len, EVP_des_ede3_cbc(),
+ EVP_sha1(), 0);
+}
+
+static int aead_des_ede3_cbc_sha1_tls_implicit_iv_init(EVP_AEAD_CTX *ctx,
+ const uint8_t *key,
+ size_t key_len,
+ size_t tag_len) {
+ return aead_tls_init(ctx, key, key_len, tag_len, EVP_des_ede3_cbc(),
+ EVP_sha1(), 1);
+}
+
+static const EVP_AEAD aead_rc4_sha1_tls = {
+ SHA_DIGEST_LENGTH + 16, /* key len (SHA1 + RC4) */
+ 0, /* nonce len */
+ SHA_DIGEST_LENGTH, /* overhead */
+ SHA_DIGEST_LENGTH, /* max tag length */
+ aead_rc4_sha1_tls_init,
+ aead_tls_cleanup,
+ aead_tls_seal,
+ aead_tls_open,
+};
+
+static const EVP_AEAD aead_aes_128_cbc_sha1_tls = {
+ SHA_DIGEST_LENGTH + 16, /* key len (SHA1 + AES128) */
+ 16, /* nonce len (IV) */
+ 16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */
+ SHA_DIGEST_LENGTH, /* max tag length */
+ aead_aes_128_cbc_sha1_tls_init,
+ aead_tls_cleanup,
+ aead_tls_seal,
+ aead_tls_open,
+};
+
+static const EVP_AEAD aead_aes_128_cbc_sha1_tls_implicit_iv = {
+ SHA_DIGEST_LENGTH + 16 + 16, /* key len (SHA1 + AES128 + IV) */
+ 0, /* nonce len */
+ 16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */
+ SHA_DIGEST_LENGTH, /* max tag length */
+ aead_aes_128_cbc_sha1_tls_implicit_iv_init,
+ aead_tls_cleanup,
+ aead_tls_seal,
+ aead_tls_open,
+};
+
+static const EVP_AEAD aead_aes_128_cbc_sha256_tls = {
+ SHA256_DIGEST_LENGTH + 16, /* key len (SHA256 + AES128) */
+ 16, /* nonce len (IV) */
+ 16 + SHA256_DIGEST_LENGTH, /* overhead (padding + SHA256) */
+ SHA_DIGEST_LENGTH, /* max tag length */
+ aead_aes_128_cbc_sha256_tls_init,
+ aead_tls_cleanup,
+ aead_tls_seal,
+ aead_tls_open,
+};
+
+static const EVP_AEAD aead_aes_256_cbc_sha1_tls = {
+ SHA_DIGEST_LENGTH + 32, /* key len (SHA1 + AES256) */
+ 16, /* nonce len (IV) */
+ 16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */
+ SHA_DIGEST_LENGTH, /* max tag length */
+ aead_aes_256_cbc_sha1_tls_init,
+ aead_tls_cleanup,
+ aead_tls_seal,
+ aead_tls_open,
+};
+
+static const EVP_AEAD aead_aes_256_cbc_sha1_tls_implicit_iv = {
+ SHA_DIGEST_LENGTH + 32 + 16, /* key len (SHA1 + AES256 + IV) */
+ 0, /* nonce len */
+ 16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */
+ SHA_DIGEST_LENGTH, /* max tag length */
+ aead_aes_256_cbc_sha1_tls_implicit_iv_init,
+ aead_tls_cleanup,
+ aead_tls_seal,
+ aead_tls_open,
+};
+
+static const EVP_AEAD aead_aes_256_cbc_sha256_tls = {
+ SHA256_DIGEST_LENGTH + 32, /* key len (SHA256 + AES256) */
+ 16, /* nonce len (IV) */
+ 16 + SHA256_DIGEST_LENGTH, /* overhead (padding + SHA256) */
+ SHA_DIGEST_LENGTH, /* max tag length */
+ aead_aes_256_cbc_sha256_tls_init,
+ aead_tls_cleanup,
+ aead_tls_seal,
+ aead_tls_open,
+};
+
+static const EVP_AEAD aead_aes_256_cbc_sha384_tls = {
+ SHA384_DIGEST_LENGTH + 32, /* key len (SHA384 + AES256) */
+ 16, /* nonce len (IV) */
+ 16 + SHA384_DIGEST_LENGTH, /* overhead (padding + SHA384) */
+ SHA_DIGEST_LENGTH, /* max tag length */
+ aead_aes_256_cbc_sha384_tls_init,
+ aead_tls_cleanup,
+ aead_tls_seal,
+ aead_tls_open,
+};
+
+static const EVP_AEAD aead_des_ede3_cbc_sha1_tls = {
+ SHA_DIGEST_LENGTH + 24, /* key len (SHA1 + 3DES) */
+ 8, /* nonce len (IV) */
+ 8 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */
+ SHA_DIGEST_LENGTH, /* max tag length */
+ aead_des_ede3_cbc_sha1_tls_init,
+ aead_tls_cleanup,
+ aead_tls_seal,
+ aead_tls_open,
+};
+
+static const EVP_AEAD aead_des_ede3_cbc_sha1_tls_implicit_iv = {
+ SHA_DIGEST_LENGTH + 24 + 8, /* key len (SHA1 + 3DES + IV) */
+ 0, /* nonce len */
+ 8 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */
+ SHA_DIGEST_LENGTH, /* max tag length */
+ aead_des_ede3_cbc_sha1_tls_implicit_iv_init,
+ aead_tls_cleanup,
+ aead_tls_seal,
+ aead_tls_open,
+};
+
+const EVP_AEAD *EVP_aead_rc4_sha1_tls(void) { return &aead_rc4_sha1_tls; }
+
+const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void) {
+ return &aead_aes_128_cbc_sha1_tls;
+}
+
+const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void) {
+ return &aead_aes_128_cbc_sha1_tls_implicit_iv;
+}
+
+const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void) {
+ return &aead_aes_128_cbc_sha256_tls;
+}
+
+const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void) {
+ return &aead_aes_256_cbc_sha1_tls;
+}
+
+const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void) {
+ return &aead_aes_256_cbc_sha1_tls_implicit_iv;
+}
+
+const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void) {
+ return &aead_aes_256_cbc_sha256_tls;
+}
+
+const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void) {
+ return &aead_aes_256_cbc_sha384_tls;
+}
+
+const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void) {
+ return &aead_des_ede3_cbc_sha1_tls;
+}
+
+const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void) {
+ return &aead_des_ede3_cbc_sha1_tls_implicit_iv;
+}