summaryrefslogtreecommitdiffstats
path: root/src/crypto/bn/exponentiation.c
blob: 6c5e11b8cd34e89e8a3165d1bc1742e78d63ad82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
/* ====================================================================
 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com). */

#include <openssl/bn.h>

#include <assert.h>
#include <string.h>

#include <openssl/cpu.h>
#include <openssl/err.h>
#include <openssl/mem.h>

#include "internal.h"


#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
#define OPENSSL_BN_ASM_MONT5
#define RSAZ_ENABLED

#include "rsaz_exp.h"
#endif

int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
  int i, bits, ret = 0;
  BIGNUM *v, *rr;

  if ((p->flags & BN_FLG_CONSTTIME) != 0) {
    /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
    OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    return 0;
  }

  BN_CTX_start(ctx);
  if (r == a || r == p) {
    rr = BN_CTX_get(ctx);
  } else {
    rr = r;
  }

  v = BN_CTX_get(ctx);
  if (rr == NULL || v == NULL) {
    goto err;
  }

  if (BN_copy(v, a) == NULL) {
    goto err;
  }
  bits = BN_num_bits(p);

  if (BN_is_odd(p)) {
    if (BN_copy(rr, a) == NULL) {
      goto err;
    }
  } else {
    if (!BN_one(rr)) {
      goto err;
    }
  }

  for (i = 1; i < bits; i++) {
    if (!BN_sqr(v, v, ctx)) {
      goto err;
    }
    if (BN_is_bit_set(p, i)) {
      if (!BN_mul(rr, rr, v, ctx)) {
        goto err;
      }
    }
  }

  if (r != rr && !BN_copy(r, rr)) {
    goto err;
  }
  ret = 1;

err:
  BN_CTX_end(ctx);
  return ret;
}

/* maximum precomputation table size for *variable* sliding windows */
#define TABLE_SIZE 32

typedef struct bn_recp_ctx_st {
  BIGNUM N;  /* the divisor */
  BIGNUM Nr; /* the reciprocal */
  int num_bits;
  int shift;
  int flags;
} BN_RECP_CTX;

static void BN_RECP_CTX_init(BN_RECP_CTX *recp) {
  BN_init(&recp->N);
  BN_init(&recp->Nr);
  recp->num_bits = 0;
  recp->flags = 0;
}

static void BN_RECP_CTX_free(BN_RECP_CTX *recp) {
  if (recp == NULL) {
    return;
  }

  BN_free(&recp->N);
  BN_free(&recp->Nr);
}

static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) {
  if (!BN_copy(&(recp->N), d)) {
    return 0;
  }
  BN_zero(&recp->Nr);
  recp->num_bits = BN_num_bits(d);
  recp->shift = 0;

  return 1;
}

/* len is the expected size of the result We actually calculate with an extra
 * word of precision, so we can do faster division if the remainder is not
 * required.
 * r := 2^len / m */
static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) {
  int ret = -1;
  BIGNUM *t;

  BN_CTX_start(ctx);
  t = BN_CTX_get(ctx);
  if (t == NULL) {
    goto err;
  }

  if (!BN_set_bit(t, len)) {
    goto err;
  }

  if (!BN_div(r, NULL, t, m, ctx)) {
    goto err;
  }

  ret = len;

err:
  BN_CTX_end(ctx);
  return ret;
}

static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
                       BN_RECP_CTX *recp, BN_CTX *ctx) {
  int i, j, ret = 0;
  BIGNUM *a, *b, *d, *r;

  BN_CTX_start(ctx);
  a = BN_CTX_get(ctx);
  b = BN_CTX_get(ctx);
  if (dv != NULL) {
    d = dv;
  } else {
    d = BN_CTX_get(ctx);
  }

  if (rem != NULL) {
    r = rem;
  } else {
    r = BN_CTX_get(ctx);
  }

  if (a == NULL || b == NULL || d == NULL || r == NULL) {
    goto err;
  }

  if (BN_ucmp(m, &(recp->N)) < 0) {
    BN_zero(d);
    if (!BN_copy(r, m)) {
      return 0;
    }
    BN_CTX_end(ctx);
    return 1;
  }

  /* We want the remainder
   * Given input of ABCDEF / ab
   * we need multiply ABCDEF by 3 digests of the reciprocal of ab */

  /* i := max(BN_num_bits(m), 2*BN_num_bits(N)) */
  i = BN_num_bits(m);
  j = recp->num_bits << 1;
  if (j > i) {
    i = j;
  }

  /* Nr := round(2^i / N) */
  if (i != recp->shift) {
    recp->shift =
        BN_reciprocal(&(recp->Nr), &(recp->N), i,
                      ctx); /* BN_reciprocal returns i, or -1 for an error */
  }

  if (recp->shift == -1) {
    goto err;
  }

  /* d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i -
   * BN_num_bits(N)))|
   *    = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i -
   * BN_num_bits(N)))|
   *   <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
   *    = |m/N| */
  if (!BN_rshift(a, m, recp->num_bits)) {
    goto err;
  }
  if (!BN_mul(b, a, &(recp->Nr), ctx)) {
    goto err;
  }
  if (!BN_rshift(d, b, i - recp->num_bits)) {
    goto err;
  }
  d->neg = 0;

  if (!BN_mul(b, &(recp->N), d, ctx)) {
    goto err;
  }
  if (!BN_usub(r, m, b)) {
    goto err;
  }
  r->neg = 0;

  j = 0;
  while (BN_ucmp(r, &(recp->N)) >= 0) {
    if (j++ > 2) {
      OPENSSL_PUT_ERROR(BN, BN_R_BAD_RECIPROCAL);
      goto err;
    }
    if (!BN_usub(r, r, &(recp->N))) {
      goto err;
    }
    if (!BN_add_word(d, 1)) {
      goto err;
    }
  }

  r->neg = BN_is_zero(r) ? 0 : m->neg;
  d->neg = m->neg ^ recp->N.neg;
  ret = 1;

err:
  BN_CTX_end(ctx);
  return ret;
}

static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
                                 BN_RECP_CTX *recp, BN_CTX *ctx) {
  int ret = 0;
  BIGNUM *a;
  const BIGNUM *ca;

  BN_CTX_start(ctx);
  a = BN_CTX_get(ctx);
  if (a == NULL) {
    goto err;
  }

  if (y != NULL) {
    if (x == y) {
      if (!BN_sqr(a, x, ctx)) {
        goto err;
      }
    } else {
      if (!BN_mul(a, x, y, ctx)) {
        goto err;
      }
    }
    ca = a;
  } else {
    ca = x; /* Just do the mod */
  }

  ret = BN_div_recp(NULL, r, ca, recp, ctx);

err:
  BN_CTX_end(ctx);
  return ret;
}

/* BN_window_bits_for_exponent_size -- macro for sliding window mod_exp
 * functions
 *
 * For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of
 * multiplications is a constant plus on average
 *
 *    2^(w-1) + (b-w)/(w+1);
 *
 * here 2^(w-1)  is for precomputing the table (we actually need entries only
 * for windows that have the lowest bit set), and (b-w)/(w+1)  is an
 * approximation for the expected number of w-bit windows, not counting the
 * first one.
 *
 * Thus we should use
 *
 *    w >= 6  if        b > 671
 *     w = 5  if  671 > b > 239
 *     w = 4  if  239 > b >  79
 *     w = 3  if   79 > b >  23
 *    w <= 2  if   23 > b
 *
 * (with draws in between).  Very small exponents are often selected
 * with low Hamming weight, so we use  w = 1  for b <= 23. */
#define BN_window_bits_for_exponent_size(b) \
		((b) > 671 ? 6 : \
		 (b) > 239 ? 5 : \
		 (b) >  79 ? 4 : \
		 (b) >  23 ? 3 : 1)

static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
                        const BIGNUM *m, BN_CTX *ctx) {
  int i, j, bits, ret = 0, wstart, window;
  int start = 1;
  BIGNUM *aa;
  /* Table of variables obtained from 'ctx' */
  BIGNUM *val[TABLE_SIZE];
  BN_RECP_CTX recp;

  if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
    /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
    OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    return 0;
  }

  bits = BN_num_bits(p);

  if (bits == 0) {
    ret = BN_one(r);
    return ret;
  }

  BN_CTX_start(ctx);
  aa = BN_CTX_get(ctx);
  val[0] = BN_CTX_get(ctx);
  if (!aa || !val[0]) {
    goto err;
  }

  BN_RECP_CTX_init(&recp);
  if (m->neg) {
    /* ignore sign of 'm' */
    if (!BN_copy(aa, m)) {
      goto err;
    }
    aa->neg = 0;
    if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) {
      goto err;
    }
  } else {
    if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) {
      goto err;
    }
  }

  if (!BN_nnmod(val[0], a, m, ctx)) {
    goto err; /* 1 */
  }
  if (BN_is_zero(val[0])) {
    BN_zero(r);
    ret = 1;
    goto err;
  }

  window = BN_window_bits_for_exponent_size(bits);
  if (window > 1) {
    if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) {
      goto err; /* 2 */
    }
    j = 1 << (window - 1);
    for (i = 1; i < j; i++) {
      if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
          !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) {
        goto err;
      }
    }
  }

  start = 1; /* This is used to avoid multiplication etc
              * when there is only the value '1' in the
              * buffer. */
  wstart = bits - 1; /* The top bit of the window */

  if (!BN_one(r)) {
    goto err;
  }

  for (;;) {
    int wvalue; /* The 'value' of the window */
    int wend; /* The bottom bit of the window */

    if (BN_is_bit_set(p, wstart) == 0) {
      if (!start) {
        if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
          goto err;
        }
      }
      if (wstart == 0) {
        break;
      }
      wstart--;
      continue;
    }

    /* We now have wstart on a 'set' bit, we now need to work out
     * how bit a window to do.  To do this we need to scan
     * forward until the last set bit before the end of the
     * window */
    wvalue = 1;
    wend = 0;
    for (i = 1; i < window; i++) {
      if (wstart - i < 0) {
        break;
      }
      if (BN_is_bit_set(p, wstart - i)) {
        wvalue <<= (i - wend);
        wvalue |= 1;
        wend = i;
      }
    }

    /* wend is the size of the current window */
    j = wend + 1;
    /* add the 'bytes above' */
    if (!start) {
      for (i = 0; i < j; i++) {
        if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
          goto err;
        }
      }
    }

    /* wvalue will be an odd number < 2^window */
    if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) {
      goto err;
    }

    /* move the 'window' down further */
    wstart -= wend + 1;
    start = 0;
    if (wstart < 0) {
      break;
    }
  }
  ret = 1;

err:
  BN_CTX_end(ctx);
  BN_RECP_CTX_free(&recp);
  return ret;
}

int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
               BN_CTX *ctx) {
  /* For even modulus  m = 2^k*m_odd,  it might make sense to compute
   * a^p mod m_odd  and  a^p mod 2^k  separately (with Montgomery
   * exponentiation for the odd part), using appropriate exponent
   * reductions, and combine the results using the CRT.
   *
   * For now, we use Montgomery only if the modulus is odd; otherwise,
   * exponentiation using the reciprocal-based quick remaindering
   * algorithm is used.
   *
   * (Timing obtained with expspeed.c [computations  a^p mod m
   * where  a, p, m  are of the same length: 256, 512, 1024, 2048,
   * 4096, 8192 bits], compared to the running time of the
   * standard algorithm:
   *
   *   BN_mod_exp_mont   33 .. 40 %  [AMD K6-2, Linux, debug configuration]
   *                     55 .. 77 %  [UltraSparc processor, but
   *                                  debug-solaris-sparcv8-gcc conf.]
   *
   *   BN_mod_exp_recp   50 .. 70 %  [AMD K6-2, Linux, debug configuration]
   *                     62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
   *
   * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
   * at 2048 and more bits, but at 512 and 1024 bits, it was
   * slower even than the standard algorithm!
   *
   * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
   * should be obtained when the new Montgomery reduction code
   * has been integrated into OpenSSL.) */

  if (BN_is_odd(m)) {
    if (a->top == 1 && !a->neg && BN_get_flags(p, BN_FLG_CONSTTIME) == 0) {
      BN_ULONG A = a->d[0];
      return BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
    }

    return BN_mod_exp_mont(r, a, p, m, ctx, NULL);
  }

  return mod_exp_recp(r, a, p, m, ctx);
}

int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
                    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) {
  int i, j, bits, ret = 0, wstart, window;
  int start = 1;
  BIGNUM *d, *r;
  const BIGNUM *aa;
  /* Table of variables obtained from 'ctx' */
  BIGNUM *val[TABLE_SIZE];
  BN_MONT_CTX *mont = NULL;

  if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
    return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
  }

  if (!BN_is_odd(m)) {
    OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
    return 0;
  }
  bits = BN_num_bits(p);
  if (bits == 0) {
    ret = BN_one(rr);
    return ret;
  }

  BN_CTX_start(ctx);
  d = BN_CTX_get(ctx);
  r = BN_CTX_get(ctx);
  val[0] = BN_CTX_get(ctx);
  if (!d || !r || !val[0]) {
    goto err;
  }

  /* If this is not done, things will break in the montgomery part */

  if (in_mont != NULL) {
    mont = in_mont;
  } else {
    mont = BN_MONT_CTX_new();
    if (mont == NULL) {
      goto err;
    }
    if (!BN_MONT_CTX_set(mont, m, ctx)) {
      goto err;
    }
  }

  if (a->neg || BN_ucmp(a, m) >= 0) {
    if (!BN_nnmod(val[0], a, m, ctx)) {
      goto err;
    }
    aa = val[0];
  } else {
    aa = a;
  }

  if (BN_is_zero(aa)) {
    BN_zero(rr);
    ret = 1;
    goto err;
  }
  if (!BN_to_montgomery(val[0], aa, mont, ctx)) {
    goto err; /* 1 */
  }

  window = BN_window_bits_for_exponent_size(bits);
  if (window > 1) {
    if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) {
      goto err; /* 2 */
    }
    j = 1 << (window - 1);
    for (i = 1; i < j; i++) {
      if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
          !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) {
        goto err;
      }
    }
  }

  start = 1; /* This is used to avoid multiplication etc
              * when there is only the value '1' in the
              * buffer. */
  wstart = bits - 1; /* The top bit of the window */

  j = m->top; /* borrow j */
  if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
    if (bn_wexpand(r, j) == NULL) {
      goto err;
    }
    /* 2^(top*BN_BITS2) - m */
    r->d[0] = (0 - m->d[0]) & BN_MASK2;
    for (i = 1; i < j; i++) {
      r->d[i] = (~m->d[i]) & BN_MASK2;
    }
    r->top = j;
    /* Upper words will be zero if the corresponding words of 'm'
     * were 0xfff[...], so decrement r->top accordingly. */
    bn_correct_top(r);
  } else if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) {
    goto err;
  }

  for (;;) {
    int wvalue; /* The 'value' of the window */
    int wend; /* The bottom bit of the window */

    if (BN_is_bit_set(p, wstart) == 0) {
      if (!start && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
        goto err;
      }
      if (wstart == 0) {
        break;
      }
      wstart--;
      continue;
    }

    /* We now have wstart on a 'set' bit, we now need to work out how bit a
     * window to do.  To do this we need to scan forward until the last set bit
     * before the end of the window */
    wvalue = 1;
    wend = 0;
    for (i = 1; i < window; i++) {
      if (wstart - i < 0) {
        break;
      }
      if (BN_is_bit_set(p, wstart - i)) {
        wvalue <<= (i - wend);
        wvalue |= 1;
        wend = i;
      }
    }

    /* wend is the size of the current window */
    j = wend + 1;
    /* add the 'bytes above' */
    if (!start) {
      for (i = 0; i < j; i++) {
        if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
          goto err;
        }
      }
    }

    /* wvalue will be an odd number < 2^window */
    if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) {
      goto err;
    }

    /* move the 'window' down further */
    wstart -= wend + 1;
    start = 0;
    if (wstart < 0) {
      break;
    }
  }

  if (!BN_from_montgomery(rr, r, mont, ctx)) {
    goto err;
  }
  ret = 1;

err:
  if (in_mont == NULL) {
    BN_MONT_CTX_free(mont);
  }
  BN_CTX_end(ctx);
  return ret;
}

/* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
 * layout so that accessing any of these table values shows the same access
 * pattern as far as cache lines are concerned. The following functions are
 * used to transfer a BIGNUM from/to that table. */
static int copy_to_prebuf(const BIGNUM *b, int top, unsigned char *buf, int idx,
                          int width) {
  size_t i, j;

  if (top > b->top) {
    top = b->top; /* this works because 'buf' is explicitly zeroed */
  }
  for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) {
    buf[j] = ((unsigned char *)b->d)[i];
  }

  return 1;
}

static int copy_from_prebuf(BIGNUM *b, int top, unsigned char *buf, int idx,
                            int width) {
  size_t i, j;

  if (bn_wexpand(b, top) == NULL) {
    return 0;
  }

  for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) {
    ((unsigned char *)b->d)[i] = buf[j];
  }

  b->top = top;
  bn_correct_top(b);
  return 1;
}

/* BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
 * line width of the target processor is at least the following value. */
#define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH (64)
#define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \
  (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)

/* Window sizes optimized for fixed window size modular exponentiation
 * algorithm (BN_mod_exp_mont_consttime).
 *
 * To achieve the security goals of BN_mode_exp_mont_consttime, the maximum
 * size of the window must not exceed
 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). 
 *
 * Window size thresholds are defined for cache line sizes of 32 and 64, cache
 * line sizes where log_2(32)=5 and log_2(64)=6 respectively. A window size of
 * 7 should only be used on processors that have a 128 byte or greater cache
 * line size. */
#if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64

#define BN_window_bits_for_ctime_exponent_size(b) \
  ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
#define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)

#elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32

#define BN_window_bits_for_ctime_exponent_size(b) \
  ((b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
#define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)

#endif

/* Given a pointer value, compute the next address that is a cache line
 * multiple. */
#define MOD_EXP_CTIME_ALIGN(x_)          \
  ((unsigned char *)(x_) +               \
   (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - \
    (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))

/* This variant of BN_mod_exp_mont() uses fixed windows and the special
 * precomputation memory layout to limit data-dependency to a minimum
 * to protect secret exponents (cf. the hyper-threading timing attacks
 * pointed out by Colin Percival,
 * http://www.daemonology.net/hyperthreading-considered-harmful/)
 */
int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
                              const BIGNUM *m, BN_CTX *ctx,
                              BN_MONT_CTX *in_mont) {
  int i, bits, ret = 0, window, wvalue;
  int top;
  BN_MONT_CTX *mont = NULL;

  int numPowers;
  unsigned char *powerbufFree = NULL;
  int powerbufLen = 0;
  unsigned char *powerbuf = NULL;
  BIGNUM tmp, am;

  if (!BN_is_odd(m)) {
    OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
    return 0;
  }

  top = m->top;

  bits = BN_num_bits(p);
  if (bits == 0) {
    ret = BN_one(rr);
    return ret;
  }

  BN_CTX_start(ctx);

  /* Allocate a montgomery context if it was not supplied by the caller.
   * If this is not done, things will break in the montgomery part. */
  if (in_mont != NULL) {
    mont = in_mont;
  } else {
    mont = BN_MONT_CTX_new();
    if (mont == NULL || !BN_MONT_CTX_set(mont, m, ctx)) {
      goto err;
    }
  }

#ifdef RSAZ_ENABLED
  /* If the size of the operands allow it, perform the optimized
   * RSAZ exponentiation. For further information see
   * crypto/bn/rsaz_exp.c and accompanying assembly modules. */
  if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024) &&
      rsaz_avx2_eligible()) {
    if (NULL == bn_wexpand(rr, 16)) {
      goto err;
    }
    RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]);
    rr->top = 16;
    rr->neg = 0;
    bn_correct_top(rr);
    ret = 1;
    goto err;
  } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
    if (NULL == bn_wexpand(rr, 8)) {
      goto err;
    }
    RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
    rr->top = 8;
    rr->neg = 0;
    bn_correct_top(rr);
    ret = 1;
    goto err;
  }
#endif

  /* Get the window size to use with size of p. */
  window = BN_window_bits_for_ctime_exponent_size(bits);
#if defined(OPENSSL_BN_ASM_MONT5)
  if (window >= 5) {
    window = 5; /* ~5% improvement for RSA2048 sign, and even for RSA4096 */
    if ((top & 7) == 0) {
      powerbufLen += 2 * top * sizeof(m->d[0]);
    }
  }
#endif

  /* Allocate a buffer large enough to hold all of the pre-computed
   * powers of am, am itself and tmp.
   */
  numPowers = 1 << window;
  powerbufLen +=
      sizeof(m->d[0]) *
      (top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers));
#ifdef alloca
  if (powerbufLen < 3072) {
    powerbufFree = alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
  } else
#endif
  {
    if ((powerbufFree = (unsigned char *)OPENSSL_malloc(
            powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) {
      goto err;
    }
  }

  powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
  memset(powerbuf, 0, powerbufLen);

#ifdef alloca
  if (powerbufLen < 3072) {
    powerbufFree = NULL;
  }
#endif

  /* lay down tmp and am right after powers table */
  tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
  am.d = tmp.d + top;
  tmp.top = am.top = 0;
  tmp.dmax = am.dmax = top;
  tmp.neg = am.neg = 0;
  tmp.flags = am.flags = BN_FLG_STATIC_DATA;

/* prepare a^0 in Montgomery domain */
/* by Shay Gueron's suggestion */
  if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
    /* 2^(top*BN_BITS2) - m */
    tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
    for (i = 1; i < top; i++) {
      tmp.d[i] = (~m->d[i]) & BN_MASK2;
    }
    tmp.top = top;
  } else if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx)) {
    goto err;
  }

  /* prepare a^1 in Montgomery domain */
  if (a->neg || BN_ucmp(a, m) >= 0) {
    if (!BN_mod(&am, a, m, ctx) ||
        !BN_to_montgomery(&am, &am, mont, ctx)) {
      goto err;
    }
  } else if (!BN_to_montgomery(&am, a, mont, ctx)) {
    goto err;
  }

#if defined(OPENSSL_BN_ASM_MONT5)
  /* This optimization uses ideas from http://eprint.iacr.org/2011/239,
   * specifically optimization of cache-timing attack countermeasures
   * and pre-computation optimization. */

  /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
   * 512-bit RSA is hardly relevant, we omit it to spare size... */
  if (window == 5 && top > 1) {
    void bn_mul_mont_gather5(BN_ULONG * rp, const BN_ULONG * ap,
                             const void * table, const BN_ULONG * np,
                             const BN_ULONG * n0, int num, int power);
    void bn_scatter5(const BN_ULONG * inp, size_t num, void * table,
                     size_t power);
    void bn_gather5(BN_ULONG * out, size_t num, void * table, size_t power);
    void bn_power5(BN_ULONG * rp, const BN_ULONG * ap, const void * table,
                   const BN_ULONG * np, const BN_ULONG * n0, int num,
                   int power);
    int bn_from_montgomery(BN_ULONG * rp, const BN_ULONG * ap,
                           const BN_ULONG * not_used, const BN_ULONG * np,
                           const BN_ULONG * n0, int num);

    BN_ULONG *np = mont->N.d, *n0 = mont->n0, *np2;

    /* BN_to_montgomery can contaminate words above .top
     * [in BN_DEBUG[_DEBUG] build]... */
    for (i = am.top; i < top; i++) {
      am.d[i] = 0;
    }
    for (i = tmp.top; i < top; i++) {
      tmp.d[i] = 0;
    }

    if (top & 7) {
      np2 = np;
    } else {
      for (np2 = am.d + top, i = 0; i < top; i++) {
        np2[2 * i] = np[i];
      }
    }

    bn_scatter5(tmp.d, top, powerbuf, 0);
    bn_scatter5(am.d, am.top, powerbuf, 1);
    bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
    bn_scatter5(tmp.d, top, powerbuf, 2);

    /* same as above, but uses squaring for 1/2 of operations */
    for (i = 4; i < 32; i *= 2) {
      bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
      bn_scatter5(tmp.d, top, powerbuf, i);
    }
    for (i = 3; i < 8; i += 2) {
      int j;
      bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
      bn_scatter5(tmp.d, top, powerbuf, i);
      for (j = 2 * i; j < 32; j *= 2) {
        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
        bn_scatter5(tmp.d, top, powerbuf, j);
      }
    }
    for (; i < 16; i += 2) {
      bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
      bn_scatter5(tmp.d, top, powerbuf, i);
      bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
      bn_scatter5(tmp.d, top, powerbuf, 2 * i);
    }
    for (; i < 32; i += 2) {
      bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
      bn_scatter5(tmp.d, top, powerbuf, i);
    }

    bits--;
    for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) {
      wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
    }
    bn_gather5(tmp.d, top, powerbuf, wvalue);

    /* At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit
     * that has not been read yet.) */
    assert(bits >= -1 && (bits == -1 || bits % 5 == 4));

    /* Scan the exponent one window at a time starting from the most
     * significant bits.
     */
    if (top & 7) {
      while (bits >= 0) {
        for (wvalue = 0, i = 0; i < 5; i++, bits--) {
          wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
        }

        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
        bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
      }
    } else {
      const uint8_t *p_bytes = (const uint8_t *)p->d;
      int max_bits = p->top * BN_BITS2;
      assert(bits < max_bits);
      /* |p = 0| has been handled as a special case, so |max_bits| is at least
       * one word. */
      assert(max_bits >= 64);

      /* If the first bit to be read lands in the last byte, unroll the first
       * iteration to avoid reading past the bounds of |p->d|. (After the first
       * iteration, we are guaranteed to be past the last byte.) Note |bits|
       * here is the top bit, inclusive. */
      if (bits - 4 >= max_bits - 8) {
        /* Read five bits from |bits-4| through |bits|, inclusive. */
        wvalue = p_bytes[p->top * BN_BYTES - 1];
        wvalue >>= (bits - 4) & 7;
        wvalue &= 0x1f;
        bits -= 5;
        bn_power5(tmp.d, tmp.d, powerbuf, np2, n0, top, wvalue);
      }
      while (bits >= 0) {
        /* Read five bits from |bits-4| through |bits|, inclusive. */
        int first_bit = bits - 4;
        wvalue = *(const uint16_t *) (p_bytes + (first_bit >> 3));
        wvalue >>= first_bit & 7;
        wvalue &= 0x1f;
        bits -= 5;
        bn_power5(tmp.d, tmp.d, powerbuf, np2, n0, top, wvalue);
      }
    }

    ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np2, n0, top);
    tmp.top = top;
    bn_correct_top(&tmp);
    if (ret) {
      if (!BN_copy(rr, &tmp)) {
        ret = 0;
      }
      goto err; /* non-zero ret means it's not error */
    }
  } else
#endif
  {
    if (!copy_to_prebuf(&tmp, top, powerbuf, 0, numPowers) ||
        !copy_to_prebuf(&am, top, powerbuf, 1, numPowers)) {
      goto err;
    }

    /* If the window size is greater than 1, then calculate
     * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
     * (even powers could instead be computed as (a^(i/2))^2
     * to use the slight performance advantage of sqr over mul).
     */
    if (window > 1) {
      if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx) ||
          !copy_to_prebuf(&tmp, top, powerbuf, 2, numPowers)) {
        goto err;
      }
      for (i = 3; i < numPowers; i++) {
        /* Calculate a^i = a^(i-1) * a */
        if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx) ||
            !copy_to_prebuf(&tmp, top, powerbuf, i, numPowers)) {
          goto err;
        }
      }
    }

    bits--;
    for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) {
      wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
    }
    if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, numPowers)) {
      goto err;
    }

    /* Scan the exponent one window at a time starting from the most
     * significant bits.
     */
    while (bits >= 0) {
      wvalue = 0; /* The 'value' of the window */

      /* Scan the window, squaring the result as we go */
      for (i = 0; i < window; i++, bits--) {
        if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) {
          goto err;
        }
        wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
      }

      /* Fetch the appropriate pre-computed value from the pre-buf */
      if (!copy_from_prebuf(&am, top, powerbuf, wvalue, numPowers)) {
        goto err;
      }

      /* Multiply the result into the intermediate result */
      if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) {
        goto err;
      }
    }
  }

  /* Convert the final result from montgomery to standard format */
  if (!BN_from_montgomery(rr, &tmp, mont, ctx)) {
    goto err;
  }
  ret = 1;
err:
  if (in_mont == NULL) {
    BN_MONT_CTX_free(mont);
  }
  if (powerbuf != NULL) {
    OPENSSL_cleanse(powerbuf, powerbufLen);
    OPENSSL_free(powerbufFree);
  }
  BN_CTX_end(ctx);
  return (ret);
}

int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
                         const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) {
  BN_MONT_CTX *mont = NULL;
  int b, bits, ret = 0;
  int r_is_one;
  BN_ULONG w, next_w;
  BIGNUM *d, *r, *t;
  BIGNUM *swap_tmp;
#define BN_MOD_MUL_WORD(r, w, m)   \
  (BN_mul_word(r, (w)) &&          \
   (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \
    (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
  /* BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
   * probably more overhead than always using BN_mod (which uses BN_copy if a
   * similar test returns true). We can use BN_mod and do not need BN_nnmod
   * because our accumulator is never negative (the result of BN_mod does not
   * depend on the sign of the modulus). */
#define BN_TO_MONTGOMERY_WORD(r, w, mont) \
  (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))

  if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
    /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
    OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    return 0;
  }

  if (!BN_is_odd(m)) {
    OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
    return 0;
  }

  if (m->top == 1) {
    a %= m->d[0]; /* make sure that 'a' is reduced */
  }

  bits = BN_num_bits(p);
  if (bits == 0) {
    /* x**0 mod 1 is still zero. */
    if (BN_is_one(m)) {
      ret = 1;
      BN_zero(rr);
    } else {
      ret = BN_one(rr);
    }
    return ret;
  }
  if (a == 0) {
    BN_zero(rr);
    ret = 1;
    return ret;
  }

  BN_CTX_start(ctx);
  d = BN_CTX_get(ctx);
  r = BN_CTX_get(ctx);
  t = BN_CTX_get(ctx);
  if (d == NULL || r == NULL || t == NULL) {
    goto err;
  }

  if (in_mont != NULL) {
    mont = in_mont;
  } else {
    mont = BN_MONT_CTX_new();
    if (mont == NULL || !BN_MONT_CTX_set(mont, m, ctx)) {
      goto err;
    }
  }

  r_is_one = 1; /* except for Montgomery factor */

  /* bits-1 >= 0 */

  /* The result is accumulated in the product r*w. */
  w = a; /* bit 'bits-1' of 'p' is always set */
  for (b = bits - 2; b >= 0; b--) {
    /* First, square r*w. */
    next_w = w * w;
    if ((next_w / w) != w) {
      /* overflow */
      if (r_is_one) {
        if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
          goto err;
        }
        r_is_one = 0;
      } else {
        if (!BN_MOD_MUL_WORD(r, w, m)) {
          goto err;
        }
      }
      next_w = 1;
    }

    w = next_w;
    if (!r_is_one) {
      if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
        goto err;
      }
    }

    /* Second, multiply r*w by 'a' if exponent bit is set. */
    if (BN_is_bit_set(p, b)) {
      next_w = w * a;
      if ((next_w / a) != w) {
        /* overflow */
        if (r_is_one) {
          if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
            goto err;
          }
          r_is_one = 0;
        } else {
          if (!BN_MOD_MUL_WORD(r, w, m)) {
            goto err;
          }
        }
        next_w = a;
      }
      w = next_w;
    }
  }

  /* Finally, set r:=r*w. */
  if (w != 1) {
    if (r_is_one) {
      if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
        goto err;
      }
      r_is_one = 0;
    } else {
      if (!BN_MOD_MUL_WORD(r, w, m)) {
        goto err;
      }
    }
  }

  if (r_is_one) {
    /* can happen only if a == 1*/
    if (!BN_one(rr)) {
      goto err;
    }
  } else {
    if (!BN_from_montgomery(rr, r, mont, ctx)) {
      goto err;
    }
  }
  ret = 1;

err:
  if (in_mont == NULL) {
    BN_MONT_CTX_free(mont);
  }
  BN_CTX_end(ctx);
  return ret;
}

#define TABLE_SIZE 32

int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
                     const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
                     BN_CTX *ctx, BN_MONT_CTX *in_mont) {
  int i, j, bits, b, bits1, bits2, ret = 0, wpos1, wpos2, window1, window2,
                                   wvalue1, wvalue2;
  int r_is_one = 1;
  BIGNUM *d, *r;
  const BIGNUM *a_mod_m;
  /* Tables of variables obtained from 'ctx' */
  BIGNUM *val1[TABLE_SIZE], *val2[TABLE_SIZE];
  BN_MONT_CTX *mont = NULL;

  if (!(m->d[0] & 1)) {
    OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
    return 0;
  }
  bits1 = BN_num_bits(p1);
  bits2 = BN_num_bits(p2);
  if (bits1 == 0 && bits2 == 0) {
    ret = BN_one(rr);
    return ret;
  }

  bits = (bits1 > bits2) ? bits1 : bits2;

  BN_CTX_start(ctx);
  d = BN_CTX_get(ctx);
  r = BN_CTX_get(ctx);
  val1[0] = BN_CTX_get(ctx);
  val2[0] = BN_CTX_get(ctx);
  if (!d || !r || !val1[0] || !val2[0]) {
    goto err;
  }

  if (in_mont != NULL) {
    mont = in_mont;
  } else {
    mont = BN_MONT_CTX_new();
    if (mont == NULL) {
      goto err;
    }
    if (!BN_MONT_CTX_set(mont, m, ctx)) {
      goto err;
    }
  }

  window1 = BN_window_bits_for_exponent_size(bits1);
  window2 = BN_window_bits_for_exponent_size(bits2);

  /* Build table for a1:   val1[i] := a1^(2*i + 1) mod m  for i = 0 ..
   * 2^(window1-1) */
  if (a1->neg || BN_ucmp(a1, m) >= 0) {
    if (!BN_mod(val1[0], a1, m, ctx)) {
      goto err;
    }
    a_mod_m = val1[0];
  } else {
    a_mod_m = a1;
  }

  if (BN_is_zero(a_mod_m)) {
    BN_zero(rr);
    ret = 1;
    goto err;
  }

  if (!BN_to_montgomery(val1[0], a_mod_m, mont, ctx)) {
    goto err;
  }

  if (window1 > 1) {
    if (!BN_mod_mul_montgomery(d, val1[0], val1[0], mont, ctx)) {
      goto err;
    }

    j = 1 << (window1 - 1);
    for (i = 1; i < j; i++) {
      if (((val1[i] = BN_CTX_get(ctx)) == NULL) ||
          !BN_mod_mul_montgomery(val1[i], val1[i - 1], d, mont, ctx)) {
        goto err;
      }
    }
  }

  /* Build table for a2:   val2[i] := a2^(2*i + 1) mod m  for i = 0 ..
   * 2^(window2-1) */
  if (a2->neg || BN_ucmp(a2, m) >= 0) {
    if (!BN_mod(val2[0], a2, m, ctx)) {
      goto err;
    }
    a_mod_m = val2[0];
  } else {
    a_mod_m = a2;
  }

  if (BN_is_zero(a_mod_m)) {
    BN_zero(rr);
    ret = 1;
    goto err;
  }

  if (!BN_to_montgomery(val2[0], a_mod_m, mont, ctx)) {
    goto err;
  }

  if (window2 > 1) {
    if (!BN_mod_mul_montgomery(d, val2[0], val2[0], mont, ctx)) {
      goto err;
    }

    j = 1 << (window2 - 1);
    for (i = 1; i < j; i++) {
      if (((val2[i] = BN_CTX_get(ctx)) == NULL) ||
          !BN_mod_mul_montgomery(val2[i], val2[i - 1], d, mont, ctx)) {
        goto err;
      }
    }
  }

  /* Now compute the power product, using independent windows. */
  r_is_one = 1;
  wvalue1 = 0; /* The 'value' of the first window */
  wvalue2 = 0; /* The 'value' of the second window */
  wpos1 = 0;   /* If wvalue1 > 0, the bottom bit of the first window */
  wpos2 = 0;   /* If wvalue2 > 0, the bottom bit of the second window */

  if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) {
    goto err;
  }

  for (b = bits - 1; b >= 0; b--) {
    if (!r_is_one) {
      if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
        goto err;
      }
    }

    if (!wvalue1 && BN_is_bit_set(p1, b)) {
      /* consider bits b-window1+1 .. b for this window */
      i = b - window1 + 1;
      /* works for i<0 */
      while (!BN_is_bit_set(p1, i)) {
        i++;
      }
      wpos1 = i;
      wvalue1 = 1;
      for (i = b - 1; i >= wpos1; i--) {
        wvalue1 <<= 1;
        if (BN_is_bit_set(p1, i)) {
          wvalue1++;
        }
      }
    }

    if (!wvalue2 && BN_is_bit_set(p2, b)) {
      /* consider bits b-window2+1 .. b for this window */
      i = b - window2 + 1;
      while (!BN_is_bit_set(p2, i)) {
        i++;
      }
      wpos2 = i;
      wvalue2 = 1;
      for (i = b - 1; i >= wpos2; i--) {
        wvalue2 <<= 1;
        if (BN_is_bit_set(p2, i)) {
          wvalue2++;
        }
      }
    }

    if (wvalue1 && b == wpos1) {
      /* wvalue1 is odd and < 2^window1 */
      if (!BN_mod_mul_montgomery(r, r, val1[wvalue1 >> 1], mont, ctx)) {
        goto err;
      }
      wvalue1 = 0;
      r_is_one = 0;
    }

    if (wvalue2 && b == wpos2) {
      /* wvalue2 is odd and < 2^window2 */
      if (!BN_mod_mul_montgomery(r, r, val2[wvalue2 >> 1], mont, ctx)) {
        goto err;
      }
      wvalue2 = 0;
      r_is_one = 0;
    }
  }

  if (!BN_from_montgomery(rr, r, mont, ctx)) {
    goto err;
  }
  ret = 1;

err:
  if (in_mont == NULL) {
    BN_MONT_CTX_free(mont);
  }
  BN_CTX_end(ctx);
  return ret;
}