summaryrefslogtreecommitdiffstats
path: root/src/crypto/ec/ec_test.cc
blob: 5af42d5fe75c0fa1e2d3dbe2495983c37dd77a24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/* Copyright (c) 2014, Google Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */

#include <stdio.h>
#include <string.h>

#include <vector>

#include <openssl/crypto.h>
#include <openssl/ec_key.h>
#include <openssl/err.h>
#include <openssl/mem.h>

#include "../test/scoped_types.h"
#include "../test/stl_compat.h"


// kECKeyWithoutPublic is an ECPrivateKey with the optional publicKey field
// omitted.
static const uint8_t kECKeyWithoutPublic[] = {
  0x30, 0x31, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa, 0xda, 0x15, 0xb0,
  0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb, 0x24, 0x1a, 0xff, 0x2e,
  0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc, 0xc5, 0x30, 0x52, 0xb0, 0x77,
  0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07,
};

// kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where
// the private key is one. The private key is incorrectly encoded without zero
// padding.
static const uint8_t kECKeyMissingZeros[] = {
  0x30, 0x58, 0x02, 0x01, 0x01, 0x04, 0x01, 0x01, 0xa0, 0x0a, 0x06, 0x08, 0x2a,
  0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1, 0x44, 0x03, 0x42, 0x00, 0x04,
  0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63,
  0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1,
  0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f,
  0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57,
  0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5,
};

// kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where
// the private key is one. The private key is encoded with the required zero
// padding.
static const uint8_t kECKeyWithZeros[] = {
  0x30, 0x77, 0x02, 0x01, 0x01, 0x04, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
  0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1,
  0x44, 0x03, 0x42, 0x00, 0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47,
  0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d,
  0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3,
  0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e,
  0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68,
  0x37, 0xbf, 0x51, 0xf5,
};

// DecodeECPrivateKey decodes |in| as an ECPrivateKey structure and returns the
// result or nullptr on error.
static ScopedEC_KEY DecodeECPrivateKey(const uint8_t *in, size_t in_len) {
  const uint8_t *inp = in;
  ScopedEC_KEY ret(d2i_ECPrivateKey(NULL, &inp, in_len));
  if (!ret || inp != in + in_len) {
    return nullptr;
  }
  return ret;
}

// EncodeECPrivateKey encodes |key| as an ECPrivateKey structure into |*out|. It
// returns true on success or false on error.
static bool EncodeECPrivateKey(std::vector<uint8_t> *out, EC_KEY *key) {
  int len = i2d_ECPrivateKey(key, NULL);
  out->resize(len);
  uint8_t *outp = bssl::vector_data(out);
  return i2d_ECPrivateKey(key, &outp) == len;
}

bool Testd2i_ECPrivateKey() {
  ScopedEC_KEY key = DecodeECPrivateKey(kECKeyWithoutPublic,
                                        sizeof(kECKeyWithoutPublic));
  if (!key) {
    fprintf(stderr, "Failed to parse private key.\n");
    ERR_print_errors_fp(stderr);
    return false;
  }

  std::vector<uint8_t> out;
  if (!EncodeECPrivateKey(&out, key.get())) {
    fprintf(stderr, "Failed to serialize private key.\n");
    ERR_print_errors_fp(stderr);
    return false;
  }

  if (std::vector<uint8_t>(kECKeyWithoutPublic,
                           kECKeyWithoutPublic + sizeof(kECKeyWithoutPublic)) !=
      out) {
    fprintf(stderr, "Serialisation of key doesn't match original.\n");
    return false;
  }

  const EC_POINT *pub_key = EC_KEY_get0_public_key(key.get());
  if (pub_key == NULL) {
    fprintf(stderr, "Public key missing.\n");
    return false;
  }

  ScopedBIGNUM x(BN_new());
  ScopedBIGNUM y(BN_new());
  if (!x || !y) {
    return false;
  }
  if (!EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(key.get()),
                                           pub_key, x.get(), y.get(), NULL)) {
    fprintf(stderr, "Failed to get public key in affine coordinates.\n");
    return false;
  }
  ScopedOpenSSLString x_hex(BN_bn2hex(x.get()));
  ScopedOpenSSLString y_hex(BN_bn2hex(y.get()));
  if (!x_hex || !y_hex) {
    return false;
  }
  if (0 != strcmp(
          x_hex.get(),
          "c81561ecf2e54edefe6617db1c7a34a70744ddb261f269b83dacfcd2ade5a681") ||
      0 != strcmp(
          y_hex.get(),
          "e0e2afa3f9b6abe4c698ef6495f1be49a3196c5056acb3763fe4507eec596e88")) {
    fprintf(stderr, "Incorrect public key: %s %s\n", x_hex.get(), y_hex.get());
    return false;
  }

  return true;
}

static bool TestZeroPadding() {
  // Check that the correct encoding round-trips.
  ScopedEC_KEY key = DecodeECPrivateKey(kECKeyWithZeros,
                                        sizeof(kECKeyWithZeros));
  std::vector<uint8_t> out;
  if (!key || !EncodeECPrivateKey(&out, key.get())) {
    ERR_print_errors_fp(stderr);
    return false;
  }

  if (std::vector<uint8_t>(kECKeyWithZeros,
                           kECKeyWithZeros + sizeof(kECKeyWithZeros)) != out) {
    fprintf(stderr, "Serialisation of key was incorrect.\n");
    return false;
  }

  // Keys without leading zeros also parse, but they encode correctly.
  key = DecodeECPrivateKey(kECKeyMissingZeros, sizeof(kECKeyMissingZeros));
  if (!key || !EncodeECPrivateKey(&out, key.get())) {
    ERR_print_errors_fp(stderr);
    return false;
  }

  if (std::vector<uint8_t>(kECKeyWithZeros,
                           kECKeyWithZeros + sizeof(kECKeyWithZeros)) != out) {
    fprintf(stderr, "Serialisation of key was incorrect.\n");
    return false;
  }

  return true;
}

int main(void) {
  CRYPTO_library_init();
  ERR_load_crypto_strings();

  if (!Testd2i_ECPrivateKey() ||
      !TestZeroPadding()) {
    fprintf(stderr, "failed\n");
    return 1;
  }

  printf("PASS\n");
  return 0;
}