summaryrefslogtreecommitdiffstats
path: root/src/ssl/d1_both.c
blob: 662f518f0ad64765d04f54c58ff31b46d1c127e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
/*
 * DTLS implementation written by Nagendra Modadugu
 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005. 
 */
/* ====================================================================
 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.] */

#include <assert.h>
#include <limits.h>
#include <stdio.h>
#include <string.h>

#include <openssl/buf.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/rand.h>
#include <openssl/x509.h>

#include "internal.h"


/* TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable
 * for these values? Notably, why is kMinMTU a function of the transport
 * protocol's overhead rather than, say, what's needed to hold a minimally-sized
 * handshake fragment plus protocol overhead. */

/* kMinMTU is the minimum acceptable MTU value. */
static const unsigned int kMinMTU = 256 - 28;

/* kDefaultMTU is the default MTU value to use if neither the user nor
 * the underlying BIO supplies one. */
static const unsigned int kDefaultMTU = 1500 - 28;

/* kMaxHandshakeBuffer is the maximum number of handshake messages ahead of the
 * current one to buffer. */
static const unsigned int kHandshakeBufferSize = 10;

static void dtls1_fix_message_header(SSL *s, unsigned long frag_off,
                                     unsigned long frag_len);
static unsigned char *dtls1_write_message_header(SSL *s, unsigned char *p);

static hm_fragment *dtls1_hm_fragment_new(unsigned long frag_len,
                                          int reassembly) {
  hm_fragment *frag = NULL;
  uint8_t *buf = NULL;
  uint8_t *bitmask = NULL;

  frag = (hm_fragment *)OPENSSL_malloc(sizeof(hm_fragment));
  if (frag == NULL) {
    OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_MALLOC_FAILURE);
    return NULL;
  }

  if (frag_len) {
    buf = (uint8_t *)OPENSSL_malloc(frag_len);
    if (buf == NULL) {
      OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_MALLOC_FAILURE);
      OPENSSL_free(frag);
      return NULL;
    }
  }

  /* zero length fragment gets zero frag->fragment */
  frag->fragment = buf;

  /* Initialize reassembly bitmask if necessary */
  if (reassembly && frag_len > 0) {
    if (frag_len + 7 < frag_len) {
      OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_OVERFLOW);
      return NULL;
    }
    size_t bitmask_len = (frag_len + 7) / 8;
    bitmask = (uint8_t *)OPENSSL_malloc(bitmask_len);
    if (bitmask == NULL) {
      OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_MALLOC_FAILURE);
      if (buf != NULL) {
        OPENSSL_free(buf);
      }
      OPENSSL_free(frag);
      return NULL;
    }
    memset(bitmask, 0, bitmask_len);
  }

  frag->reassembly = bitmask;

  return frag;
}

void dtls1_hm_fragment_free(hm_fragment *frag) {
  if (frag == NULL) {
    return;
  }
  OPENSSL_free(frag->fragment);
  OPENSSL_free(frag->reassembly);
  OPENSSL_free(frag);
}

#if !defined(inline)
#define inline __inline
#endif

/* bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|,
 * exclusive, set. */
static inline uint8_t bit_range(size_t start, size_t end) {
  return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1));
}

/* dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive,
 * as received in |frag|. If |frag| becomes complete, it clears
 * |frag->reassembly|. The range must be within the bounds of |frag|'s message
 * and |frag->reassembly| must not be NULL. */
static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start,
                                   size_t end) {
  size_t i;
  size_t msg_len = frag->msg_header.msg_len;

  if (frag->reassembly == NULL || start > end || end > msg_len) {
    assert(0);
    return;
  }
  /* A zero-length message will never have a pending reassembly. */
  assert(msg_len > 0);

  if ((start >> 3) == (end >> 3)) {
    frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7);
  } else {
    frag->reassembly[start >> 3] |= bit_range(start & 7, 8);
    for (i = (start >> 3) + 1; i < (end >> 3); i++) {
      frag->reassembly[i] = 0xff;
    }
    if ((end & 7) != 0) {
      frag->reassembly[end >> 3] |= bit_range(0, end & 7);
    }
  }

  /* Check if the fragment is complete. */
  for (i = 0; i < (msg_len >> 3); i++) {
    if (frag->reassembly[i] != 0xff) {
      return;
    }
  }
  if ((msg_len & 7) != 0 &&
      frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) {
    return;
  }

  OPENSSL_free(frag->reassembly);
  frag->reassembly = NULL;
}

/* send s->init_buf in records of type 'type' (SSL3_RT_HANDSHAKE or
 * SSL3_RT_CHANGE_CIPHER_SPEC) */
int dtls1_do_write(SSL *s, int type) {
  int ret;
  int curr_mtu;
  unsigned int len, frag_off;
  size_t max_overhead = 0;

  /* AHA!  Figure out the MTU, and stick to the right size */
  if (s->d1->mtu < dtls1_min_mtu() &&
      !(SSL_get_options(s) & SSL_OP_NO_QUERY_MTU)) {
    long mtu = BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
    if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) {
      s->d1->mtu = (unsigned)mtu;
    } else {
      s->d1->mtu = kDefaultMTU;
      BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SET_MTU, s->d1->mtu, NULL);
    }
  }

  /* should have something reasonable now */
  assert(s->d1->mtu >= dtls1_min_mtu());

  if (s->init_off == 0 && type == SSL3_RT_HANDSHAKE) {
    assert(s->init_num ==
           (int)s->d1->w_msg_hdr.msg_len + DTLS1_HM_HEADER_LENGTH);
  }

  /* Determine the maximum overhead of the current cipher. */
  if (s->aead_write_ctx != NULL) {
    max_overhead = EVP_AEAD_max_overhead(s->aead_write_ctx->ctx.aead);
    if (s->aead_write_ctx->variable_nonce_included_in_record) {
      max_overhead += s->aead_write_ctx->variable_nonce_len;
    }
  }

  frag_off = 0;
  while (s->init_num) {
    /* Account for data in the buffering BIO; multiple records may be packed
     * into a single packet during the handshake.
     *
     * TODO(davidben): This is buggy; if the MTU is larger than the buffer size,
     * the large record will be split across two packets. Moreover, in that
     * case, the |dtls1_write_bytes| call may not return synchronously. This
     * will break on retry as the |s->init_off| and |s->init_num| adjustment
     * will run a second time. */
    curr_mtu = s->d1->mtu - BIO_wpending(SSL_get_wbio(s)) -
        DTLS1_RT_HEADER_LENGTH - max_overhead;

    if (curr_mtu <= DTLS1_HM_HEADER_LENGTH) {
      /* Flush the buffer and continue with a fresh packet.
       *
       * TODO(davidben): If |BIO_flush| is not synchronous and requires multiple
       * calls to |dtls1_do_write|, |frag_off| will be wrong. */
      ret = BIO_flush(SSL_get_wbio(s));
      if (ret <= 0) {
        return ret;
      }
      assert(BIO_wpending(SSL_get_wbio(s)) == 0);
      curr_mtu = s->d1->mtu - DTLS1_RT_HEADER_LENGTH - max_overhead;
    }

    /* XDTLS: this function is too long.  split out the CCS part */
    if (type == SSL3_RT_HANDSHAKE) {
      /* If this isn't the first fragment, reserve space to prepend a new
       * fragment header. This will override the body of a previous fragment. */
      if (s->init_off != 0) {
        assert(s->init_off > DTLS1_HM_HEADER_LENGTH);
        s->init_off -= DTLS1_HM_HEADER_LENGTH;
        s->init_num += DTLS1_HM_HEADER_LENGTH;
      }

      if (curr_mtu <= DTLS1_HM_HEADER_LENGTH) {
        /* To make forward progress, the MTU must, at minimum, fit the handshake
         * header and one byte of handshake body. */
        OPENSSL_PUT_ERROR(SSL, dtls1_do_write, SSL_R_MTU_TOO_SMALL);
        return -1;
      }

      if (s->init_num > curr_mtu) {
        len = curr_mtu;
      } else {
        len = s->init_num;
      }
      assert(len >= DTLS1_HM_HEADER_LENGTH);

      dtls1_fix_message_header(s, frag_off, len - DTLS1_HM_HEADER_LENGTH);
      dtls1_write_message_header(
          s, (uint8_t *)&s->init_buf->data[s->init_off]);
    } else {
      assert(type == SSL3_RT_CHANGE_CIPHER_SPEC);
      /* ChangeCipherSpec cannot be fragmented. */
      if (s->init_num > curr_mtu) {
        OPENSSL_PUT_ERROR(SSL, dtls1_do_write, SSL_R_MTU_TOO_SMALL);
        return -1;
      }
      len = s->init_num;
    }

    ret = dtls1_write_bytes(s, type, &s->init_buf->data[s->init_off], len);
    if (ret < 0) {
      return -1;
    }

    /* bad if this assert fails, only part of the handshake message got sent.
     * But why would this happen? */
    assert(len == (unsigned int)ret);

    if (ret == s->init_num) {
      if (s->msg_callback) {
        s->msg_callback(1, s->version, type, s->init_buf->data,
                        (size_t)(s->init_off + s->init_num), s,
                        s->msg_callback_arg);
      }

      s->init_off = 0; /* done writing this message */
      s->init_num = 0;

      return 1;
    }
    s->init_off += ret;
    s->init_num -= ret;
    frag_off += (ret -= DTLS1_HM_HEADER_LENGTH);
  }

  return 0;
}

/* dtls1_is_next_message_complete returns one if the next handshake message is
 * complete and zero otherwise. */
static int dtls1_is_next_message_complete(SSL *s) {
  pitem *item = pqueue_peek(s->d1->buffered_messages);
  if (item == NULL) {
    return 0;
  }

  hm_fragment *frag = (hm_fragment *)item->data;
  assert(s->d1->handshake_read_seq <= frag->msg_header.seq);

  return s->d1->handshake_read_seq == frag->msg_header.seq &&
      frag->reassembly == NULL;
}

/* dtls1_discard_fragment_body discards a handshake fragment body of length
 * |frag_len|. It returns one on success and zero on error.
 *
 * TODO(davidben): This function will go away when ssl_read_bytes is gone from
 * the DTLS side. */
static int dtls1_discard_fragment_body(SSL *s, size_t frag_len) {
  uint8_t discard[256];
  while (frag_len > 0) {
    size_t chunk = frag_len < sizeof(discard) ? frag_len : sizeof(discard);
    int ret = s->method->ssl_read_bytes(s, SSL3_RT_HANDSHAKE, discard, chunk,
                                        0);
    if (ret != chunk) {
      return 0;
    }
    frag_len -= chunk;
  }
  return 1;
}

/* dtls1_get_buffered_message returns the buffered message corresponding to
 * |msg_hdr|. If none exists, it creates a new one and inserts it in the
 * queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It
 * returns NULL on failure. The caller does not take ownership of the result. */
static hm_fragment *dtls1_get_buffered_message(
    SSL *s, const struct hm_header_st *msg_hdr) {
  uint8_t seq64be[8];
  memset(seq64be, 0, sizeof(seq64be));
  seq64be[6] = (uint8_t)(msg_hdr->seq >> 8);
  seq64be[7] = (uint8_t)msg_hdr->seq;
  pitem *item = pqueue_find(s->d1->buffered_messages, seq64be);

  hm_fragment *frag;
  if (item == NULL) {
    /* This is the first fragment from this message. */
    frag = dtls1_hm_fragment_new(msg_hdr->msg_len,
                                 1 /* reassembly buffer needed */);
    if (frag == NULL) {
      return NULL;
    }
    memcpy(&frag->msg_header, msg_hdr, sizeof(*msg_hdr));
    item = pitem_new(seq64be, frag);
    if (item == NULL) {
      dtls1_hm_fragment_free(frag);
      return NULL;
    }
    item = pqueue_insert(s->d1->buffered_messages, item);
    /* |pqueue_insert| fails iff a duplicate item is inserted, but |item| cannot
     * be a duplicate. */
    assert(item != NULL);
  } else {
    frag = item->data;
    assert(frag->msg_header.seq == msg_hdr->seq);
    if (frag->msg_header.type != msg_hdr->type ||
        frag->msg_header.msg_len != msg_hdr->msg_len) {
      /* The new fragment must be compatible with the previous fragments from
       * this message. */
      OPENSSL_PUT_ERROR(SSL, dtls1_get_buffered_message,
                        SSL_R_FRAGMENT_MISMATCH);
      ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
      return NULL;
    }
  }
  return frag;
}

/* dtls1_max_handshake_message_len returns the maximum number of bytes
 * permitted in a DTLS handshake message for |s|. The minimum is 16KB, but may
 * be greater if the maximum certificate list size requires it. */
static size_t dtls1_max_handshake_message_len(const SSL *s) {
  size_t max_len = DTLS1_HM_HEADER_LENGTH + SSL3_RT_MAX_ENCRYPTED_LENGTH;
  if (max_len < s->max_cert_list) {
    return s->max_cert_list;
  }
  return max_len;
}

/* dtls1_process_fragment reads a handshake fragment and processes it. It
 * returns one if a fragment was successfully processed and 0 or -1 on error. */
static int dtls1_process_fragment(SSL *s) {
  /* Read handshake message header.
   *
   * TODO(davidben): ssl_read_bytes allows splitting the fragment header and
   * body across two records. Change this interface to consume the fragment in
   * one pass. */
  uint8_t header[DTLS1_HM_HEADER_LENGTH];
  int ret = s->method->ssl_read_bytes(s, SSL3_RT_HANDSHAKE, header,
                                      DTLS1_HM_HEADER_LENGTH, 0);
  if (ret <= 0) {
    return ret;
  }
  if (ret != DTLS1_HM_HEADER_LENGTH) {
    OPENSSL_PUT_ERROR(SSL, dtls1_process_fragment, SSL_R_UNEXPECTED_MESSAGE);
    ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
    return -1;
  }

  /* Parse the message fragment header. */
  struct hm_header_st msg_hdr;
  dtls1_get_message_header(header, &msg_hdr);

  const size_t frag_off = msg_hdr.frag_off;
  const size_t frag_len = msg_hdr.frag_len;
  const size_t msg_len = msg_hdr.msg_len;
  if (frag_off > msg_len || frag_off + frag_len < frag_off ||
      frag_off + frag_len > msg_len ||
      msg_len > dtls1_max_handshake_message_len(s)) {
    OPENSSL_PUT_ERROR(SSL, dtls1_process_fragment,
                      SSL_R_EXCESSIVE_MESSAGE_SIZE);
    ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
    return -1;
  }

  if (msg_hdr.seq < s->d1->handshake_read_seq ||
      msg_hdr.seq > (unsigned)s->d1->handshake_read_seq +
                    kHandshakeBufferSize) {
    /* Ignore fragments from the past, or ones too far in the future. */
    if (!dtls1_discard_fragment_body(s, frag_len)) {
      return -1;
    }
    return 1;
  }

  hm_fragment *frag = dtls1_get_buffered_message(s, &msg_hdr);
  if (frag == NULL) {
    return -1;
  }
  assert(frag->msg_header.msg_len == msg_len);

  if (frag->reassembly == NULL) {
    /* The message is already assembled. */
    if (!dtls1_discard_fragment_body(s, frag_len)) {
      return -1;
    }
    return 1;
  }
  assert(msg_len > 0);

  /* Read the body of the fragment. */
  ret = s->method->ssl_read_bytes(
      s, SSL3_RT_HANDSHAKE, frag->fragment + frag_off, frag_len, 0);
  if (ret != frag_len) {
    OPENSSL_PUT_ERROR(SSL, dtls1_process_fragment, SSL_R_UNEXPECTED_MESSAGE);
    ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
    return -1;
  }
  dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len);

  return 1;
}

/* dtls1_get_message reads a handshake message of message type |msg_type| (any
 * if |msg_type| == -1), maximum acceptable body length |max|. Read an entire
 * handshake message. Handshake messages arrive in fragments. */
long dtls1_get_message(SSL *s, int st1, int stn, int msg_type, long max,
                       enum ssl_hash_message_t hash_message, int *ok) {
  pitem *item = NULL;
  hm_fragment *frag = NULL;
  int al;

  /* s3->tmp is used to store messages that are unexpected, caused
   * by the absence of an optional handshake message */
  if (s->s3->tmp.reuse_message) {
    /* A ssl_dont_hash_message call cannot be combined with reuse_message; the
     * ssl_dont_hash_message would have to have been applied to the previous
     * call. */
    assert(hash_message == ssl_hash_message);
    s->s3->tmp.reuse_message = 0;
    if (msg_type >= 0 && s->s3->tmp.message_type != msg_type) {
      al = SSL_AD_UNEXPECTED_MESSAGE;
      OPENSSL_PUT_ERROR(SSL, dtls1_get_message, SSL_R_UNEXPECTED_MESSAGE);
      goto f_err;
    }
    *ok = 1;
    s->init_msg = (uint8_t *)s->init_buf->data + DTLS1_HM_HEADER_LENGTH;
    s->init_num = (int)s->s3->tmp.message_size;
    return s->init_num;
  }

  /* Process fragments until one is found. */
  while (!dtls1_is_next_message_complete(s)) {
    int ret = dtls1_process_fragment(s);
    if (ret <= 0) {
      *ok = 0;
      return ret;
    }
  }

  /* Read out the next complete handshake message. */
  item = pqueue_pop(s->d1->buffered_messages);
  assert(item != NULL);
  frag = (hm_fragment *)item->data;
  assert(s->d1->handshake_read_seq == frag->msg_header.seq);
  assert(frag->reassembly == NULL);

  if (frag->msg_header.msg_len > (size_t)max) {
    OPENSSL_PUT_ERROR(SSL, dtls1_get_message, SSL_R_EXCESSIVE_MESSAGE_SIZE);
    goto err;
  }

  CBB cbb;
  if (!BUF_MEM_grow(s->init_buf,
                    (size_t)frag->msg_header.msg_len +
                    DTLS1_HM_HEADER_LENGTH) ||
      !CBB_init_fixed(&cbb, (uint8_t *)s->init_buf->data, s->init_buf->max)) {
    OPENSSL_PUT_ERROR(SSL, dtls1_get_message, ERR_R_MALLOC_FAILURE);
    goto err;
  }

  /* Reconstruct the assembled message. */
  size_t len;
  if (!CBB_add_u8(&cbb, frag->msg_header.type) ||
      !CBB_add_u24(&cbb, frag->msg_header.msg_len) ||
      !CBB_add_u16(&cbb, frag->msg_header.seq) ||
      !CBB_add_u24(&cbb, 0 /* frag_off */) ||
      !CBB_add_u24(&cbb, frag->msg_header.msg_len) ||
      !CBB_add_bytes(&cbb, frag->fragment, frag->msg_header.msg_len) ||
      !CBB_finish(&cbb, NULL, &len)) {
    CBB_cleanup(&cbb);
    OPENSSL_PUT_ERROR(SSL, dtls1_get_message, ERR_R_INTERNAL_ERROR);
    goto err;
  }
  assert(len == (size_t)frag->msg_header.msg_len + DTLS1_HM_HEADER_LENGTH);

  s->d1->handshake_read_seq++;

  /* TODO(davidben): This function has a lot of implicit outputs. Simplify the
   * |ssl_get_message| API. */
  s->s3->tmp.message_type = frag->msg_header.type;
  s->s3->tmp.message_size = frag->msg_header.msg_len;
  s->init_msg = (uint8_t *)s->init_buf->data + DTLS1_HM_HEADER_LENGTH;
  s->init_num = frag->msg_header.msg_len;

  if (msg_type >= 0 && s->s3->tmp.message_type != msg_type) {
    al = SSL_AD_UNEXPECTED_MESSAGE;
    OPENSSL_PUT_ERROR(SSL, dtls1_get_message, SSL_R_UNEXPECTED_MESSAGE);
    goto f_err;
  }
  if (hash_message == ssl_hash_message && !ssl3_hash_current_message(s)) {
    goto err;
  }
  if (s->msg_callback) {
    s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, s->init_buf->data,
                    s->init_num + DTLS1_HM_HEADER_LENGTH, s,
                    s->msg_callback_arg);
  }

  pitem_free(item);
  dtls1_hm_fragment_free(frag);

  s->state = stn;
  *ok = 1;
  return s->init_num;

f_err:
  ssl3_send_alert(s, SSL3_AL_FATAL, al);
err:
  pitem_free(item);
  dtls1_hm_fragment_free(frag);
  *ok = 0;
  return -1;
}

/* for these 2 messages, we need to
 * ssl->enc_read_ctx			re-init
 * ssl->s3->read_sequence		zero
 * ssl->s3->read_mac_secret		re-init
 * ssl->session->read_sym_enc		assign
 * ssl->session->read_compression	assign
 * ssl->session->read_hash		assign */
int dtls1_send_change_cipher_spec(SSL *s, int a, int b) {
  uint8_t *p;

  if (s->state == a) {
    p = (uint8_t *)s->init_buf->data;
    *p++ = SSL3_MT_CCS;
    s->d1->handshake_write_seq = s->d1->next_handshake_write_seq;
    s->init_num = DTLS1_CCS_HEADER_LENGTH;

    s->init_off = 0;

    dtls1_set_message_header(s, SSL3_MT_CCS, 0, s->d1->handshake_write_seq, 0,
                             0);

    /* buffer the message to handle re-xmits */
    dtls1_buffer_message(s, 1);

    s->state = b;
  }

  /* SSL3_ST_CW_CHANGE_B */
  return dtls1_do_write(s, SSL3_RT_CHANGE_CIPHER_SPEC);
}

int dtls1_read_failed(SSL *s, int code) {
  if (code > 0) {
    assert(0);
    return 1;
  }

  if (!dtls1_is_timer_expired(s)) {
    /* not a timeout, none of our business, let higher layers handle this. In
     * fact, it's probably an error */
    return code;
  }

  if (!SSL_in_init(s)) {
    /* done, no need to send a retransmit */
    BIO_set_flags(SSL_get_rbio(s), BIO_FLAGS_READ);
    return code;
  }

  return DTLSv1_handle_timeout(s);
}

int dtls1_get_queue_priority(unsigned short seq, int is_ccs) {
  /* The index of the retransmission queue actually is the message sequence
   * number, since the queue only contains messages of a single handshake.
   * However, the ChangeCipherSpec has no message sequence number and so using
   * only the sequence will result in the CCS and Finished having the same
   * index. To prevent this, the sequence number is multiplied by 2. In case of
   * a CCS 1 is subtracted. This does not only differ CSS and Finished, it also
   * maintains the order of the index (important for priority queues) and fits
   * in the unsigned short variable. */
  return seq * 2 - is_ccs;
}

static int dtls1_retransmit_message(SSL *s, hm_fragment *frag) {
  int ret;
  /* XDTLS: for now assuming that read/writes are blocking */
  unsigned long header_length;
  uint8_t save_write_sequence[8];

  /* assert(s->init_num == 0);
     assert(s->init_off == 0); */

  if (frag->msg_header.is_ccs) {
    header_length = DTLS1_CCS_HEADER_LENGTH;
  } else {
    header_length = DTLS1_HM_HEADER_LENGTH;
  }

  memcpy(s->init_buf->data, frag->fragment,
         frag->msg_header.msg_len + header_length);
  s->init_num = frag->msg_header.msg_len + header_length;

  dtls1_set_message_header(s, frag->msg_header.type,
                           frag->msg_header.msg_len, frag->msg_header.seq,
                           0, frag->msg_header.frag_len);

  /* Save current state. */
  SSL_AEAD_CTX *aead_write_ctx = s->aead_write_ctx;
  uint16_t epoch = s->d1->w_epoch;

  /* DTLS renegotiation is unsupported, so only epochs 0 (NULL cipher) and 1
   * (negotiated cipher) exist. */
  assert(epoch == 0 || epoch == 1);
  assert(frag->msg_header.epoch <= epoch);
  const int fragment_from_previous_epoch = (epoch == 1 &&
                                            frag->msg_header.epoch == 0);
  if (fragment_from_previous_epoch) {
    /* Rewind to the previous epoch.
     *
     * TODO(davidben): Instead of swapping out connection-global state, this
     * logic should pass a "use previous epoch" parameter down to lower-level
     * functions. */
    s->d1->w_epoch = frag->msg_header.epoch;
    s->aead_write_ctx = NULL;
    memcpy(save_write_sequence, s->s3->write_sequence,
           sizeof(s->s3->write_sequence));
    memcpy(s->s3->write_sequence, s->d1->last_write_sequence,
           sizeof(s->s3->write_sequence));
  } else {
    /* Otherwise the messages must be from the same epoch. */
    assert(frag->msg_header.epoch == epoch);
  }

  ret = dtls1_do_write(s, frag->msg_header.is_ccs ? SSL3_RT_CHANGE_CIPHER_SPEC
                                                  : SSL3_RT_HANDSHAKE);

  if (fragment_from_previous_epoch) {
    /* Restore the current epoch. */
    s->aead_write_ctx = aead_write_ctx;
    s->d1->w_epoch = epoch;
    memcpy(s->d1->last_write_sequence, s->s3->write_sequence,
           sizeof(s->s3->write_sequence));
    memcpy(s->s3->write_sequence, save_write_sequence,
           sizeof(s->s3->write_sequence));
  }

  (void)BIO_flush(SSL_get_wbio(s));
  return ret;
}


int dtls1_retransmit_buffered_messages(SSL *s) {
  pqueue sent = s->d1->sent_messages;
  piterator iter = pqueue_iterator(sent);
  pitem *item;

  for (item = pqueue_next(&iter); item != NULL; item = pqueue_next(&iter)) {
    hm_fragment *frag = (hm_fragment *)item->data;
    if (dtls1_retransmit_message(s, frag) <= 0) {
      return -1;
    }
  }

  return 1;
}

int dtls1_buffer_message(SSL *s, int is_ccs) {
  pitem *item;
  hm_fragment *frag;
  uint8_t seq64be[8];

  /* this function is called immediately after a message has
   * been serialized */
  assert(s->init_off == 0);

  frag = dtls1_hm_fragment_new(s->init_num, 0);
  if (!frag) {
    return 0;
  }

  memcpy(frag->fragment, s->init_buf->data, s->init_num);

  if (is_ccs) {
    assert(s->d1->w_msg_hdr.msg_len + DTLS1_CCS_HEADER_LENGTH ==
           (unsigned int)s->init_num);
  } else {
    assert(s->d1->w_msg_hdr.msg_len + DTLS1_HM_HEADER_LENGTH ==
           (unsigned int)s->init_num);
  }

  frag->msg_header.msg_len = s->d1->w_msg_hdr.msg_len;
  frag->msg_header.seq = s->d1->w_msg_hdr.seq;
  frag->msg_header.type = s->d1->w_msg_hdr.type;
  frag->msg_header.frag_off = 0;
  frag->msg_header.frag_len = s->d1->w_msg_hdr.msg_len;
  frag->msg_header.is_ccs = is_ccs;
  frag->msg_header.epoch = s->d1->w_epoch;

  memset(seq64be, 0, sizeof(seq64be));
  seq64be[6] = (uint8_t)(
      dtls1_get_queue_priority(frag->msg_header.seq, frag->msg_header.is_ccs) >>
      8);
  seq64be[7] = (uint8_t)(
      dtls1_get_queue_priority(frag->msg_header.seq, frag->msg_header.is_ccs));

  item = pitem_new(seq64be, frag);
  if (item == NULL) {
    dtls1_hm_fragment_free(frag);
    return 0;
  }

  pqueue_insert(s->d1->sent_messages, item);
  return 1;
}

/* call this function when the buffered messages are no longer needed */
void dtls1_clear_record_buffer(SSL *s) {
  pitem *item;

  for (item = pqueue_pop(s->d1->sent_messages); item != NULL;
       item = pqueue_pop(s->d1->sent_messages)) {
    dtls1_hm_fragment_free((hm_fragment *)item->data);
    pitem_free(item);
  }
}

/* don't actually do the writing, wait till the MTU has been retrieved */
void dtls1_set_message_header(SSL *s, uint8_t mt, unsigned long len,
                              unsigned short seq_num, unsigned long frag_off,
                              unsigned long frag_len) {
  struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;

  msg_hdr->type = mt;
  msg_hdr->msg_len = len;
  msg_hdr->seq = seq_num;
  msg_hdr->frag_off = frag_off;
  msg_hdr->frag_len = frag_len;
}

static void dtls1_fix_message_header(SSL *s, unsigned long frag_off,
                                     unsigned long frag_len) {
  struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;

  msg_hdr->frag_off = frag_off;
  msg_hdr->frag_len = frag_len;
}

static uint8_t *dtls1_write_message_header(SSL *s, uint8_t *p) {
  struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;

  *p++ = msg_hdr->type;
  l2n3(msg_hdr->msg_len, p);

  s2n(msg_hdr->seq, p);
  l2n3(msg_hdr->frag_off, p);
  l2n3(msg_hdr->frag_len, p);

  return p;
}

unsigned int dtls1_min_mtu(void) {
  return kMinMTU;
}

void dtls1_get_message_header(uint8_t *data,
                              struct hm_header_st *msg_hdr) {
  memset(msg_hdr, 0x00, sizeof(struct hm_header_st));
  msg_hdr->type = *(data++);
  n2l3(data, msg_hdr->msg_len);

  n2s(data, msg_hdr->seq);
  n2l3(data, msg_hdr->frag_off);
  n2l3(data, msg_hdr->frag_len);
}

int dtls1_shutdown(SSL *s) {
  int ret;
  ret = ssl3_shutdown(s);
  return ret;
}