1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdio.h>
#include <stdlib.h>
#include <algorithm> // for min()
#include "base/atomicops.h"
#include "base/logging.h"
#include "testing/gtest/include/gtest/gtest.h"
// Number of bits in a size_t.
static const int kSizeBits = 8 * sizeof(size_t);
// The maximum size of a size_t.
static const size_t kMaxSize = ~static_cast<size_t>(0);
// Maximum positive size of a size_t if it were signed.
static const size_t kMaxSignedSize = ((size_t(1) << (kSizeBits-1)) - 1);
// An allocation size which is not too big to be reasonable.
static const size_t kNotTooBig = 100000;
// An allocation size which is just too big.
static const size_t kTooBig = ~static_cast<size_t>(0);
namespace {
using std::min;
// Fill a buffer of the specified size with a predetermined pattern
static void Fill(unsigned char* buffer, int n) {
for (int i = 0; i < n; i++) {
buffer[i] = (i & 0xff);
}
}
// Check that the specified buffer has the predetermined pattern
// generated by Fill()
static bool Valid(unsigned char* buffer, int n) {
for (int i = 0; i < n; i++) {
if (buffer[i] != (i & 0xff)) {
return false;
}
}
return true;
}
// Check that a buffer is completely zeroed.
static bool IsZeroed(unsigned char* buffer, int n) {
for (int i = 0; i < n; i++) {
if (buffer[i] != 0) {
return false;
}
}
return true;
}
// Check alignment
static void CheckAlignment(void* p, int align) {
EXPECT_EQ(0, reinterpret_cast<uintptr_t>(p) & (align-1));
}
// Return the next interesting size/delta to check. Returns -1 if no more.
static int NextSize(int size) {
if (size < 100)
return size+1;
if (size < 100000) {
// Find next power of two
int power = 1;
while (power < size)
power <<= 1;
// Yield (power-1, power, power+1)
if (size < power-1)
return power-1;
if (size == power-1)
return power;
assert(size == power);
return power+1;
} else {
return -1;
}
}
#define GG_ULONGLONG(x) static_cast<uint64>(x)
template <class AtomicType>
static void TestAtomicIncrement() {
// For now, we just test single threaded execution
// use a guard value to make sure the NoBarrier_AtomicIncrement doesn't go
// outside the expected address bounds. This is in particular to
// test that some future change to the asm code doesn't cause the
// 32-bit NoBarrier_AtomicIncrement to do the wrong thing on 64-bit machines.
struct {
AtomicType prev_word;
AtomicType count;
AtomicType next_word;
} s;
AtomicType prev_word_value, next_word_value;
memset(&prev_word_value, 0xFF, sizeof(AtomicType));
memset(&next_word_value, 0xEE, sizeof(AtomicType));
s.prev_word = prev_word_value;
s.count = 0;
s.next_word = next_word_value;
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 1), 1);
EXPECT_EQ(s.count, 1);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 2), 3);
EXPECT_EQ(s.count, 3);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 3), 6);
EXPECT_EQ(s.count, 6);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -3), 3);
EXPECT_EQ(s.count, 3);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -2), 1);
EXPECT_EQ(s.count, 1);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), 0);
EXPECT_EQ(s.count, 0);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), -1);
EXPECT_EQ(s.count, -1);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -4), -5);
EXPECT_EQ(s.count, -5);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 5), 0);
EXPECT_EQ(s.count, 0);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
}
#define NUM_BITS(T) (sizeof(T) * 8)
template <class AtomicType>
static void TestCompareAndSwap() {
AtomicType value = 0;
AtomicType prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 1);
EXPECT_EQ(1, value);
EXPECT_EQ(0, prev);
// Use test value that has non-zero bits in both halves, more for testing
// 64-bit implementation on 32-bit platforms.
const AtomicType k_test_val = (GG_ULONGLONG(1) <<
(NUM_BITS(AtomicType) - 2)) + 11;
value = k_test_val;
prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 5);
EXPECT_EQ(k_test_val, value);
EXPECT_EQ(k_test_val, prev);
value = k_test_val;
prev = base::subtle::NoBarrier_CompareAndSwap(&value, k_test_val, 5);
EXPECT_EQ(5, value);
EXPECT_EQ(k_test_val, prev);
}
template <class AtomicType>
static void TestAtomicExchange() {
AtomicType value = 0;
AtomicType new_value = base::subtle::NoBarrier_AtomicExchange(&value, 1);
EXPECT_EQ(1, value);
EXPECT_EQ(0, new_value);
// Use test value that has non-zero bits in both halves, more for testing
// 64-bit implementation on 32-bit platforms.
const AtomicType k_test_val = (GG_ULONGLONG(1) <<
(NUM_BITS(AtomicType) - 2)) + 11;
value = k_test_val;
new_value = base::subtle::NoBarrier_AtomicExchange(&value, k_test_val);
EXPECT_EQ(k_test_val, value);
EXPECT_EQ(k_test_val, new_value);
value = k_test_val;
new_value = base::subtle::NoBarrier_AtomicExchange(&value, 5);
EXPECT_EQ(5, value);
EXPECT_EQ(k_test_val, new_value);
}
template <class AtomicType>
static void TestAtomicIncrementBounds() {
// Test increment at the half-width boundary of the atomic type.
// It is primarily for testing at the 32-bit boundary for 64-bit atomic type.
AtomicType test_val = GG_ULONGLONG(1) << (NUM_BITS(AtomicType) / 2);
AtomicType value = test_val - 1;
AtomicType new_value = base::subtle::NoBarrier_AtomicIncrement(&value, 1);
EXPECT_EQ(test_val, value);
EXPECT_EQ(value, new_value);
base::subtle::NoBarrier_AtomicIncrement(&value, -1);
EXPECT_EQ(test_val - 1, value);
}
// This is a simple sanity check that values are correct. Not testing
// atomicity
template <class AtomicType>
static void TestStore() {
const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL);
const AtomicType kVal2 = static_cast<AtomicType>(-1);
AtomicType value;
base::subtle::NoBarrier_Store(&value, kVal1);
EXPECT_EQ(kVal1, value);
base::subtle::NoBarrier_Store(&value, kVal2);
EXPECT_EQ(kVal2, value);
base::subtle::Acquire_Store(&value, kVal1);
EXPECT_EQ(kVal1, value);
base::subtle::Acquire_Store(&value, kVal2);
EXPECT_EQ(kVal2, value);
base::subtle::Release_Store(&value, kVal1);
EXPECT_EQ(kVal1, value);
base::subtle::Release_Store(&value, kVal2);
EXPECT_EQ(kVal2, value);
}
// This is a simple sanity check that values are correct. Not testing
// atomicity
template <class AtomicType>
static void TestLoad() {
const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL);
const AtomicType kVal2 = static_cast<AtomicType>(-1);
AtomicType value;
value = kVal1;
EXPECT_EQ(kVal1, base::subtle::NoBarrier_Load(&value));
value = kVal2;
EXPECT_EQ(kVal2, base::subtle::NoBarrier_Load(&value));
value = kVal1;
EXPECT_EQ(kVal1, base::subtle::Acquire_Load(&value));
value = kVal2;
EXPECT_EQ(kVal2, base::subtle::Acquire_Load(&value));
value = kVal1;
EXPECT_EQ(kVal1, base::subtle::Release_Load(&value));
value = kVal2;
EXPECT_EQ(kVal2, base::subtle::Release_Load(&value));
}
template <class AtomicType>
static void TestAtomicOps() {
TestCompareAndSwap<AtomicType>();
TestAtomicExchange<AtomicType>();
TestAtomicIncrementBounds<AtomicType>();
TestStore<AtomicType>();
TestLoad<AtomicType>();
}
static void TestCalloc(size_t n, size_t s, bool ok) {
char* p = reinterpret_cast<char*>(calloc(n, s));
if (!ok) {
EXPECT_EQ(NULL, p) << "calloc(n, s) should not succeed";
} else {
EXPECT_NE(reinterpret_cast<void*>(NULL), p) <<
"calloc(n, s) should succeed";
for (int i = 0; i < n*s; i++) {
EXPECT_EQ('\0', p[i]);
}
free(p);
}
}
// A global test counter for number of times the NewHandler is called.
static int news_handled = 0;
static void TestNewHandler() {
++news_handled;
throw std::bad_alloc();
}
// Because we compile without exceptions, we expect these will not throw.
static void TestOneNewWithoutExceptions(void* (*func)(size_t),
bool should_throw) {
// success test
try {
void* ptr = (*func)(kNotTooBig);
EXPECT_NE(reinterpret_cast<void*>(NULL), ptr) <<
"allocation should not have failed.";
} catch(...) {
EXPECT_EQ(0, 1) << "allocation threw unexpected exception.";
}
// failure test
try {
void* rv = (*func)(kTooBig);
EXPECT_EQ(NULL, rv);
EXPECT_EQ(false, should_throw) << "allocation should have thrown.";
} catch(...) {
EXPECT_EQ(true, should_throw) << "allocation threw unexpected exception.";
}
}
static void TestNothrowNew(void* (*func)(size_t)) {
news_handled = 0;
// test without new_handler:
std::new_handler saved_handler = std::set_new_handler(0);
TestOneNewWithoutExceptions(func, false);
// test with new_handler:
std::set_new_handler(TestNewHandler);
TestOneNewWithoutExceptions(func, true);
EXPECT_EQ(news_handled, 1) << "nothrow new_handler was not called.";
std::set_new_handler(saved_handler);
}
} // namespace
//-----------------------------------------------------------------------------
TEST(Atomics, AtomicIncrementWord) {
TestAtomicIncrement<AtomicWord>();
}
TEST(Atomics, AtomicIncrement32) {
TestAtomicIncrement<Atomic32>();
}
TEST(Atomics, AtomicOpsWord) {
TestAtomicIncrement<AtomicWord>();
}
TEST(Atomics, AtomicOps32) {
TestAtomicIncrement<Atomic32>();
}
TEST(Allocators, Malloc) {
// Try allocating data with a bunch of alignments and sizes
for (int size = 1; size < 1048576; size *= 2) {
unsigned char* ptr = reinterpret_cast<unsigned char*>(malloc(size));
CheckAlignment(ptr, 2); // Should be 2 byte aligned
Fill(ptr, size);
EXPECT_EQ(true, Valid(ptr, size));
free(ptr);
}
}
TEST(Allocators, Calloc) {
TestCalloc(0, 0, true);
TestCalloc(0, 1, true);
TestCalloc(1, 1, true);
TestCalloc(1<<10, 0, true);
TestCalloc(1<<20, 0, true);
TestCalloc(0, 1<<10, true);
TestCalloc(0, 1<<20, true);
TestCalloc(1<<20, 2, true);
TestCalloc(2, 1<<20, true);
TestCalloc(1000, 1000, true);
TestCalloc(kMaxSize, 2, false);
TestCalloc(2, kMaxSize, false);
TestCalloc(kMaxSize, kMaxSize, false);
TestCalloc(kMaxSignedSize, 3, false);
TestCalloc(3, kMaxSignedSize, false);
TestCalloc(kMaxSignedSize, kMaxSignedSize, false);
}
TEST(Allocators, New) {
TestNothrowNew(&::operator new);
TestNothrowNew(&::operator new[]);
}
// This makes sure that reallocing a small number of bytes in either
// direction doesn't cause us to allocate new memory.
TEST(Allocators, Realloc1) {
int start_sizes[] = { 100, 1000, 10000, 100000 };
int deltas[] = { 1, -2, 4, -8, 16, -32, 64, -128 };
for (int s = 0; s < sizeof(start_sizes)/sizeof(*start_sizes); ++s) {
void* p = malloc(start_sizes[s]);
CHECK(p);
// The larger the start-size, the larger the non-reallocing delta.
for (int d = 0; d < s*2; ++d) {
void* new_p = realloc(p, start_sizes[s] + deltas[d]);
CHECK_EQ(p, new_p); // realloc should not allocate new memory
}
// Test again, but this time reallocing smaller first.
for (int d = 0; d < s*2; ++d) {
void* new_p = realloc(p, start_sizes[s] - deltas[d]);
CHECK_EQ(p, new_p); // realloc should not allocate new memory
}
free(p);
}
}
TEST(Allocators, Realloc2) {
for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) {
for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) {
unsigned char* src = reinterpret_cast<unsigned char*>(malloc(src_size));
Fill(src, src_size);
unsigned char* dst =
reinterpret_cast<unsigned char*>(realloc(src, dst_size));
EXPECT_EQ(true, Valid(dst, min(src_size, dst_size)));
Fill(dst, dst_size);
EXPECT_EQ(true, Valid(dst, dst_size));
if (dst != NULL) free(dst);
}
}
// Now make sure realloc works correctly even when we overflow the
// packed cache, so some entries are evicted from the cache.
// The cache has 2^12 entries, keyed by page number.
const int kNumEntries = 1 << 14;
int** p = reinterpret_cast<int**>(malloc(sizeof(*p) * kNumEntries));
int sum = 0;
for (int i = 0; i < kNumEntries; i++) {
// no page size is likely to be bigger than 8192?
p[i] = reinterpret_cast<int*>(malloc(8192));
p[i][1000] = i; // use memory deep in the heart of p
}
for (int i = 0; i < kNumEntries; i++) {
p[i] = reinterpret_cast<int*>(realloc(p[i], 9000));
}
for (int i = 0; i < kNumEntries; i++) {
sum += p[i][1000];
free(p[i]);
}
EXPECT_EQ(kNumEntries/2 * (kNumEntries - 1), sum); // assume kNE is even
free(p);
}
TEST(Allocators, ReallocZero) {
// Test that realloc to zero does not return NULL.
for (int size = 0; size >= 0; size = NextSize(size)) {
char* ptr = reinterpret_cast<char*>(malloc(size));
EXPECT_NE(static_cast<char*>(NULL), ptr);
ptr = reinterpret_cast<char*>(realloc(ptr, 0));
EXPECT_NE(static_cast<char*>(NULL), ptr);
if (ptr)
free(ptr);
}
}
#ifdef WIN32
// Test recalloc
TEST(Allocators, Recalloc) {
for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) {
for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) {
unsigned char* src =
reinterpret_cast<unsigned char*>(_recalloc(NULL, 1, src_size));
EXPECT_EQ(true, IsZeroed(src, src_size));
Fill(src, src_size);
unsigned char* dst =
reinterpret_cast<unsigned char*>(_recalloc(src, 1, dst_size));
EXPECT_EQ(true, Valid(dst, min(src_size, dst_size)));
Fill(dst, dst_size);
EXPECT_EQ(true, Valid(dst, dst_size));
if (dst != NULL)
free(dst);
}
}
}
#endif
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
|