summaryrefslogtreecommitdiffstats
path: root/base/metrics/histogram.cc
blob: 1526cd8a26ec0162c327538aa9f1350893549ce1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Histogram is an object that aggregates statistics, and can summarize them in
// various forms, including ASCII graphical, HTML, and numerically (as a
// vector of numbers corresponding to each of the aggregating buckets).
// See header file for details and examples.

#include "base/metrics/histogram.h"

#include <math.h>

#include <algorithm>
#include <string>

#include "base/logging.h"
#include "base/pickle.h"
#include "base/stringprintf.h"
#include "base/synchronization/lock.h"

namespace base {

typedef Histogram::Count Count;

scoped_refptr<Histogram> Histogram::FactoryGet(const std::string& name,
    Sample minimum, Sample maximum, size_t bucket_count, Flags flags) {
  scoped_refptr<Histogram> histogram(NULL);

  // Defensive code.
  if (minimum < 1)
    minimum = 1;
  if (maximum > kSampleType_MAX - 1)
    maximum = kSampleType_MAX - 1;

  if (!StatisticsRecorder::FindHistogram(name, &histogram)) {
    histogram = new Histogram(name, minimum, maximum, bucket_count);
    StatisticsRecorder::FindHistogram(name, &histogram);
  }

  DCHECK_EQ(HISTOGRAM, histogram->histogram_type());
  DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count));
  histogram->SetFlags(flags);
  return histogram;
}

scoped_refptr<Histogram> Histogram::FactoryTimeGet(const std::string& name,
                                                   TimeDelta minimum,
                                                   TimeDelta maximum,
                                                   size_t bucket_count,
                                                   Flags flags) {
  return FactoryGet(name, minimum.InMilliseconds(), maximum.InMilliseconds(),
                    bucket_count, flags);
}

Histogram::Histogram(const std::string& name, Sample minimum,
                     Sample maximum, size_t bucket_count)
  : histogram_name_(name),
    declared_min_(minimum),
    declared_max_(maximum),
    bucket_count_(bucket_count),
    flags_(kNoFlags),
    ranges_(bucket_count + 1, 0),
    range_checksum_(0),
    sample_() {
  Initialize();
}

Histogram::Histogram(const std::string& name, TimeDelta minimum,
                     TimeDelta maximum, size_t bucket_count)
  : histogram_name_(name),
    declared_min_(static_cast<int> (minimum.InMilliseconds())),
    declared_max_(static_cast<int> (maximum.InMilliseconds())),
    bucket_count_(bucket_count),
    flags_(kNoFlags),
    ranges_(bucket_count + 1, 0),
    range_checksum_(0),
    sample_() {
  Initialize();
}

Histogram::~Histogram() {
  if (StatisticsRecorder::dump_on_exit()) {
    std::string output;
    WriteAscii(true, "\n", &output);
    LOG(INFO) << output;
  }

  // Just to make sure most derived class did this properly...
  DCHECK(ValidateBucketRanges());
  DCHECK(HasValidRangeChecksum());
}

bool Histogram::PrintEmptyBucket(size_t index) const {
  return true;
}

void Histogram::Add(int value) {
  if (value > kSampleType_MAX - 1)
    value = kSampleType_MAX - 1;
  if (value < 0)
    value = 0;
  size_t index = BucketIndex(value);
  DCHECK_GE(value, ranges(index));
  DCHECK_LT(value, ranges(index + 1));
  Accumulate(value, 1, index);
}

void Histogram::AddBoolean(bool value) {
  DCHECK(false);
}

void Histogram::AddSampleSet(const SampleSet& sample) {
  sample_.Add(sample);
}

void Histogram::SetRangeDescriptions(const DescriptionPair descriptions[]) {
  DCHECK(false);
}

// The following methods provide a graphical histogram display.
void Histogram::WriteHTMLGraph(std::string* output) const {
  // TBD(jar) Write a nice HTML bar chart, with divs an mouse-overs etc.
  output->append("<PRE>");
  WriteAscii(true, "<br>", output);
  output->append("</PRE>");
}

void Histogram::WriteAscii(bool graph_it, const std::string& newline,
                           std::string* output) const {
  // Get local (stack) copies of all effectively volatile class data so that we
  // are consistent across our output activities.
  SampleSet snapshot;
  SnapshotSample(&snapshot);
  Count sample_count = snapshot.TotalCount();

  WriteAsciiHeader(snapshot, sample_count, output);
  output->append(newline);

  // Prepare to normalize graphical rendering of bucket contents.
  double max_size = 0;
  if (graph_it)
    max_size = GetPeakBucketSize(snapshot);

  // Calculate space needed to print bucket range numbers.  Leave room to print
  // nearly the largest bucket range without sliding over the histogram.
  size_t largest_non_empty_bucket = bucket_count() - 1;
  while (0 == snapshot.counts(largest_non_empty_bucket)) {
    if (0 == largest_non_empty_bucket)
      break;  // All buckets are empty.
    --largest_non_empty_bucket;
  }

  // Calculate largest print width needed for any of our bucket range displays.
  size_t print_width = 1;
  for (size_t i = 0; i < bucket_count(); ++i) {
    if (snapshot.counts(i)) {
      size_t width = GetAsciiBucketRange(i).size() + 1;
      if (width > print_width)
        print_width = width;
    }
  }

  int64 remaining = sample_count;
  int64 past = 0;
  // Output the actual histogram graph.
  for (size_t i = 0; i < bucket_count(); ++i) {
    Count current = snapshot.counts(i);
    if (!current && !PrintEmptyBucket(i))
      continue;
    remaining -= current;
    std::string range = GetAsciiBucketRange(i);
    output->append(range);
    for (size_t j = 0; range.size() + j < print_width + 1; ++j)
      output->push_back(' ');
    if (0 == current && i < bucket_count() - 1 && 0 == snapshot.counts(i + 1)) {
      while (i < bucket_count() - 1 && 0 == snapshot.counts(i + 1))
        ++i;
      output->append("... ");
      output->append(newline);
      continue;  // No reason to plot emptiness.
    }
    double current_size = GetBucketSize(current, i);
    if (graph_it)
      WriteAsciiBucketGraph(current_size, max_size, output);
    WriteAsciiBucketContext(past, current, remaining, i, output);
    output->append(newline);
    past += current;
  }
  DCHECK_EQ(sample_count, past);
}

bool Histogram::ValidateBucketRanges() const {
  // Standard assertions that all bucket ranges should satisfy.
  DCHECK_EQ(bucket_count_ + 1, ranges_.size());
  DCHECK_EQ(0, ranges_[0]);
  DCHECK_EQ(declared_min(), ranges_[1]);
  DCHECK_EQ(declared_max(), ranges_[bucket_count_ - 1]);
  DCHECK_EQ(kSampleType_MAX, ranges_[bucket_count_]);
  return true;
}

void Histogram::Initialize() {
  sample_.Resize(*this);
  if (declared_min_ < 1)
    declared_min_ = 1;
  if (declared_max_ > kSampleType_MAX - 1)
    declared_max_ = kSampleType_MAX - 1;
  DCHECK_LE(declared_min_, declared_max_);
  DCHECK_GT(bucket_count_, 1u);
  size_t maximal_bucket_count = declared_max_ - declared_min_ + 2;
  DCHECK_LE(bucket_count_, maximal_bucket_count);
  DCHECK_EQ(0, ranges_[0]);
  ranges_[bucket_count_] = kSampleType_MAX;
  InitializeBucketRange();
  DCHECK(ValidateBucketRanges());
  StatisticsRecorder::Register(this);
}

// Calculate what range of values are held in each bucket.
// We have to be careful that we don't pick a ratio between starting points in
// consecutive buckets that is sooo small, that the integer bounds are the same
// (effectively making one bucket get no values).  We need to avoid:
//   ranges_[i] == ranges_[i + 1]
// To avoid that, we just do a fine-grained bucket width as far as we need to
// until we get a ratio that moves us along at least 2 units at a time.  From
// that bucket onward we do use the exponential growth of buckets.
void Histogram::InitializeBucketRange() {
  double log_max = log(static_cast<double>(declared_max()));
  double log_ratio;
  double log_next;
  size_t bucket_index = 1;
  Sample current = declared_min();
  SetBucketRange(bucket_index, current);
  while (bucket_count() > ++bucket_index) {
    double log_current;
    log_current = log(static_cast<double>(current));
    // Calculate the count'th root of the range.
    log_ratio = (log_max - log_current) / (bucket_count() - bucket_index);
    // See where the next bucket would start.
    log_next = log_current + log_ratio;
    int next;
    next = static_cast<int>(floor(exp(log_next) + 0.5));
    if (next > current)
      current = next;
    else
      ++current;  // Just do a narrow bucket, and keep trying.
    SetBucketRange(bucket_index, current);
  }
  ResetRangeChecksum();

  DCHECK_EQ(bucket_count(), bucket_index);
}

size_t Histogram::BucketIndex(Sample value) const {
  // Use simple binary search.  This is very general, but there are better
  // approaches if we knew that the buckets were linearly distributed.
  DCHECK_LE(ranges(0), value);
  DCHECK_GT(ranges(bucket_count()), value);
  size_t under = 0;
  size_t over = bucket_count();
  size_t mid;

  do {
    DCHECK_GE(over, under);
    mid = (over + under)/2;
    if (mid == under)
      break;
    if (ranges(mid) <= value)
      under = mid;
    else
      over = mid;
  } while (true);

  DCHECK_LE(ranges(mid), value);
  DCHECK_GT(ranges(mid+1), value);
  return mid;
}

// Use the actual bucket widths (like a linear histogram) until the widths get
// over some transition value, and then use that transition width.  Exponentials
// get so big so fast (and we don't expect to see a lot of entries in the large
// buckets), so we need this to make it possible to see what is going on and
// not have 0-graphical-height buckets.
double Histogram::GetBucketSize(Count current, size_t i) const {
  DCHECK_GT(ranges(i + 1), ranges(i));
  static const double kTransitionWidth = 5;
  double denominator = ranges(i + 1) - ranges(i);
  if (denominator > kTransitionWidth)
    denominator = kTransitionWidth;  // Stop trying to normalize.
  return current/denominator;
}

void Histogram::ResetRangeChecksum() {
  range_checksum_ = CalculateRangeChecksum();
}

bool Histogram::HasValidRangeChecksum() const {
  return CalculateRangeChecksum() == range_checksum_;
}

Histogram::Sample Histogram::CalculateRangeChecksum() const {
  DCHECK_EQ(ranges_.size(), bucket_count() + 1);
  Sample checksum = 0;
  for (size_t index = 0; index < bucket_count(); ++index) {
    checksum += ranges(index);
  }
  return checksum;
}

//------------------------------------------------------------------------------
// The following two methods can be overridden to provide a thread safe
// version of this class.  The cost of locking is low... but an error in each
// of these methods has minimal impact.  For now, I'll leave this unlocked,
// and I don't believe I can loose more than a count or two.
// The vectors are NOT reallocated, so there is no risk of them moving around.

// Update histogram data with new sample.
void Histogram::Accumulate(Sample value, Count count, size_t index) {
  // Note locking not done in this version!!!
  sample_.Accumulate(value, count, index);
}

// Do a safe atomic snapshot of sample data.
// This implementation assumes we are on a safe single thread.
void Histogram::SnapshotSample(SampleSet* sample) const {
  // Note locking not done in this version!!!
  *sample = sample_;
}

bool Histogram::HasConstructorArguments(Sample minimum,
                                        Sample maximum,
                                        size_t bucket_count) {
  return ((minimum == declared_min_) && (maximum == declared_max_) &&
          (bucket_count == bucket_count_));
}

bool Histogram::HasConstructorTimeDeltaArguments(TimeDelta minimum,
                                                 TimeDelta maximum,
                                                 size_t bucket_count) {
  return ((minimum.InMilliseconds() == declared_min_) &&
          (maximum.InMilliseconds() == declared_max_) &&
          (bucket_count == bucket_count_));
}

//------------------------------------------------------------------------------
// Accessor methods

void Histogram::SetBucketRange(size_t i, Sample value) {
  DCHECK_GT(bucket_count_, i);
  ranges_[i] = value;
}

//------------------------------------------------------------------------------
// Private methods

double Histogram::GetPeakBucketSize(const SampleSet& snapshot) const {
  double max = 0;
  for (size_t i = 0; i < bucket_count() ; ++i) {
    double current_size = GetBucketSize(snapshot.counts(i), i);
    if (current_size > max)
      max = current_size;
  }
  return max;
}

void Histogram::WriteAsciiHeader(const SampleSet& snapshot,
                                 Count sample_count,
                                 std::string* output) const {
  StringAppendF(output,
                "Histogram: %s recorded %d samples",
                histogram_name().c_str(),
                sample_count);
  if (0 == sample_count) {
    DCHECK_EQ(snapshot.sum(), 0);
  } else {
    double average = static_cast<float>(snapshot.sum()) / sample_count;
    double variance = static_cast<float>(snapshot.square_sum())/sample_count
                      - average * average;
    double standard_deviation = sqrt(variance);

    StringAppendF(output,
                  ", average = %.1f, standard deviation = %.1f",
                  average, standard_deviation);
  }
  if (flags_ & ~kHexRangePrintingFlag)
    StringAppendF(output, " (flags = 0x%x)", flags_ & ~kHexRangePrintingFlag);
}

void Histogram::WriteAsciiBucketContext(const int64 past,
                                        const Count current,
                                        const int64 remaining,
                                        const size_t i,
                                        std::string* output) const {
  double scaled_sum = (past + current + remaining) / 100.0;
  WriteAsciiBucketValue(current, scaled_sum, output);
  if (0 < i) {
    double percentage = past / scaled_sum;
    StringAppendF(output, " {%3.1f%%}", percentage);
  }
}

const std::string Histogram::GetAsciiBucketRange(size_t i) const {
  std::string result;
  if (kHexRangePrintingFlag & flags_)
    StringAppendF(&result, "%#x", ranges(i));
  else
    StringAppendF(&result, "%d", ranges(i));
  return result;
}

void Histogram::WriteAsciiBucketValue(Count current, double scaled_sum,
                                      std::string* output) const {
  StringAppendF(output, " (%d = %3.1f%%)", current, current/scaled_sum);
}

void Histogram::WriteAsciiBucketGraph(double current_size, double max_size,
                                      std::string* output) const {
  const int k_line_length = 72;  // Maximal horizontal width of graph.
  int x_count = static_cast<int>(k_line_length * (current_size / max_size)
                                 + 0.5);
  int x_remainder = k_line_length - x_count;

  while (0 < x_count--)
    output->append("-");
  output->append("O");
  while (0 < x_remainder--)
    output->append(" ");
}

// static
std::string Histogram::SerializeHistogramInfo(const Histogram& histogram,
                                              const SampleSet& snapshot) {
  DCHECK_NE(NOT_VALID_IN_RENDERER, histogram.histogram_type());

  Pickle pickle;
  pickle.WriteString(histogram.histogram_name());
  pickle.WriteInt(histogram.declared_min());
  pickle.WriteInt(histogram.declared_max());
  pickle.WriteSize(histogram.bucket_count());
  pickle.WriteInt(histogram.range_checksum());
  pickle.WriteInt(histogram.histogram_type());
  pickle.WriteInt(histogram.flags());

  snapshot.Serialize(&pickle);
  return std::string(static_cast<const char*>(pickle.data()), pickle.size());
}

// static
bool Histogram::DeserializeHistogramInfo(const std::string& histogram_info) {
  if (histogram_info.empty()) {
      return false;
  }

  Pickle pickle(histogram_info.data(),
                static_cast<int>(histogram_info.size()));
  std::string histogram_name;
  int declared_min;
  int declared_max;
  size_t bucket_count;
  int range_checksum;
  int histogram_type;
  int pickle_flags;
  SampleSet sample;

  void* iter = NULL;
  if (!pickle.ReadString(&iter, &histogram_name) ||
      !pickle.ReadInt(&iter, &declared_min) ||
      !pickle.ReadInt(&iter, &declared_max) ||
      !pickle.ReadSize(&iter, &bucket_count) ||
      !pickle.ReadInt(&iter, &range_checksum) ||
      !pickle.ReadInt(&iter, &histogram_type) ||
      !pickle.ReadInt(&iter, &pickle_flags) ||
      !sample.Histogram::SampleSet::Deserialize(&iter, pickle)) {
    LOG(ERROR) << "Pickle error decoding Histogram: " << histogram_name;
    return false;
  }
  DCHECK(pickle_flags & kIPCSerializationSourceFlag);
  // Since these fields may have come from an untrusted renderer, do additional
  // checks above and beyond those in Histogram::Initialize()
  if (declared_max <= 0 || declared_min <= 0 || declared_max < declared_min ||
      INT_MAX / sizeof(Count) <= bucket_count || bucket_count < 2) {
    LOG(ERROR) << "Values error decoding Histogram: " << histogram_name;
    return false;
  }

  Flags flags = static_cast<Flags>(pickle_flags & ~kIPCSerializationSourceFlag);

  DCHECK_NE(NOT_VALID_IN_RENDERER, histogram_type);

  scoped_refptr<Histogram> render_histogram(NULL);

  if (histogram_type == HISTOGRAM) {
    render_histogram = Histogram::FactoryGet(
        histogram_name, declared_min, declared_max, bucket_count, flags);
  } else if (histogram_type == LINEAR_HISTOGRAM) {
    render_histogram = LinearHistogram::FactoryGet(
        histogram_name, declared_min, declared_max, bucket_count, flags);
  } else if (histogram_type == BOOLEAN_HISTOGRAM) {
    render_histogram = BooleanHistogram::FactoryGet(histogram_name, flags);
  } else {
    LOG(ERROR) << "Error Deserializing Histogram Unknown histogram_type: "
               << histogram_type;
    return false;
  }

  DCHECK_EQ(render_histogram->declared_min(), declared_min);
  DCHECK_EQ(render_histogram->declared_max(), declared_max);
  DCHECK_EQ(render_histogram->bucket_count(), bucket_count);
  DCHECK_EQ(render_histogram->range_checksum(), range_checksum);
  DCHECK_EQ(render_histogram->histogram_type(), histogram_type);

  if (render_histogram->flags() & kIPCSerializationSourceFlag) {
    DVLOG(1) << "Single process mode, histogram observed and not copied: "
             << histogram_name;
  } else {
    DCHECK_EQ(flags & render_histogram->flags(), flags);
    render_histogram->AddSampleSet(sample);
  }

  return true;
}

//------------------------------------------------------------------------------
// Methods for the validating a sample and a related histogram.
//------------------------------------------------------------------------------

Histogram::Inconsistencies Histogram::FindCorruption(
    const SampleSet& snapshot) const {
  int inconsistencies = NO_INCONSISTENCIES;
  Sample previous_range = -1;  // Bottom range is always 0.
  Sample checksum = 0;
  int64 count = 0;
  for (size_t index = 0; index < bucket_count(); ++index) {
    count += snapshot.counts(index);
    int new_range = ranges(index);
    checksum += new_range;
    if (previous_range >= new_range)
      inconsistencies |= BUCKET_ORDER_ERROR;
    previous_range = new_range;
  }

  if (checksum != range_checksum_)
    inconsistencies |= RANGE_CHECKSUM_ERROR;

  int64 delta64 = snapshot.redundant_count() - count;
  if (delta64 != 0) {
    int delta = static_cast<int>(delta64);
    if (delta != delta64)
      delta = INT_MAX;  // Flag all giant errors as INT_MAX.
    // Since snapshots of histograms are taken asynchronously relative to
    // sampling (and snapped from different threads), it is pretty likely that
    // we'll catch a redundant count that doesn't match the sample count.  We
    // allow for a certain amount of slop before flagging this as an
    // inconsistency.  Even with an inconsistency, we'll snapshot it again (for
    // UMA in about a half hour, so we'll eventually get the data, if it was
    // not the result of a corruption.  If histograms show that 1 is "too tight"
    // then we may try to use 2 or 3 for this slop value.
    const int kCommonRaceBasedCountMismatch = 1;
    if (delta > 0) {
      UMA_HISTOGRAM_COUNTS("Histogram.InconsistentCountHigh", delta);
      if (delta > kCommonRaceBasedCountMismatch)
        inconsistencies |= COUNT_HIGH_ERROR;
    } else {
      DCHECK_GT(0, delta);
      UMA_HISTOGRAM_COUNTS("Histogram.InconsistentCountLow", -delta);
      if (-delta > kCommonRaceBasedCountMismatch)
        inconsistencies |= COUNT_LOW_ERROR;
    }
  }
  return static_cast<Inconsistencies>(inconsistencies);
}

Histogram::ClassType Histogram::histogram_type() const {
  return HISTOGRAM;
}

Histogram::Sample Histogram::ranges(size_t i) const {
  return ranges_[i];
}

size_t Histogram::bucket_count() const {
  return bucket_count_;
}

//------------------------------------------------------------------------------
// Methods for the Histogram::SampleSet class
//------------------------------------------------------------------------------

Histogram::SampleSet::SampleSet()
    : counts_(),
      sum_(0),
      square_sum_(0),
      redundant_count_(0) {
}

Histogram::SampleSet::~SampleSet() {
}

void Histogram::SampleSet::Resize(const Histogram& histogram) {
  counts_.resize(histogram.bucket_count(), 0);
}

void Histogram::SampleSet::CheckSize(const Histogram& histogram) const {
  DCHECK_EQ(histogram.bucket_count(), counts_.size());
}


void Histogram::SampleSet::Accumulate(Sample value,  Count count,
                                      size_t index) {
  DCHECK(count == 1 || count == -1);
  counts_[index] += count;
  sum_ += count * value;
  square_sum_ += (count * value) * static_cast<int64>(value);
  redundant_count_ += count;
  DCHECK_GE(counts_[index], 0);
  DCHECK_GE(sum_, 0);
  DCHECK_GE(square_sum_, 0);
  DCHECK_GE(redundant_count_, 0);
}

Count Histogram::SampleSet::TotalCount() const {
  Count total = 0;
  for (Counts::const_iterator it = counts_.begin();
       it != counts_.end();
       ++it) {
    total += *it;
  }
  return total;
}

void Histogram::SampleSet::Add(const SampleSet& other) {
  DCHECK_EQ(counts_.size(), other.counts_.size());
  sum_ += other.sum_;
  square_sum_ += other.square_sum_;
  redundant_count_ += other.redundant_count_;
  for (size_t index = 0; index < counts_.size(); ++index)
    counts_[index] += other.counts_[index];
}

void Histogram::SampleSet::Subtract(const SampleSet& other) {
  DCHECK_EQ(counts_.size(), other.counts_.size());
  // Note: Race conditions in snapshotting a sum or square_sum may lead to
  // (temporary) negative values when snapshots are later combined (and deltas
  // calculated).  As a result, we don't currently CHCEK() for positive values.
  sum_ -= other.sum_;
  square_sum_ -= other.square_sum_;
  redundant_count_ -= other.redundant_count_;
  for (size_t index = 0; index < counts_.size(); ++index) {
    counts_[index] -= other.counts_[index];
    DCHECK_GE(counts_[index], 0);
  }
}

bool Histogram::SampleSet::Serialize(Pickle* pickle) const {
  pickle->WriteInt64(sum_);
  pickle->WriteInt64(square_sum_);
  pickle->WriteInt64(redundant_count_);
  pickle->WriteSize(counts_.size());

  for (size_t index = 0; index < counts_.size(); ++index) {
    pickle->WriteInt(counts_[index]);
  }

  return true;
}

bool Histogram::SampleSet::Deserialize(void** iter, const Pickle& pickle) {
  DCHECK_EQ(counts_.size(), 0u);
  DCHECK_EQ(sum_, 0);
  DCHECK_EQ(square_sum_, 0);
  DCHECK_EQ(redundant_count_, 0);

  size_t counts_size;

  if (!pickle.ReadInt64(iter, &sum_) ||
      !pickle.ReadInt64(iter, &square_sum_) ||
      !pickle.ReadInt64(iter, &redundant_count_) ||
      !pickle.ReadSize(iter, &counts_size)) {
    return false;
  }

  if (counts_size == 0)
    return false;

  int count = 0;
  for (size_t index = 0; index < counts_size; ++index) {
    int i;
    if (!pickle.ReadInt(iter, &i))
      return false;
    counts_.push_back(i);
    count += i;
  }
  DCHECK_EQ(count, redundant_count_);
  return count == redundant_count_;
}

//------------------------------------------------------------------------------
// LinearHistogram: This histogram uses a traditional set of evenly spaced
// buckets.
//------------------------------------------------------------------------------

scoped_refptr<Histogram> LinearHistogram::FactoryGet(const std::string& name,
                                                     Sample minimum,
                                                     Sample maximum,
                                                     size_t bucket_count,
                                                     Flags flags) {
  scoped_refptr<Histogram> histogram(NULL);

  if (minimum < 1)
    minimum = 1;
  if (maximum > kSampleType_MAX - 1)
    maximum = kSampleType_MAX - 1;

  if (!StatisticsRecorder::FindHistogram(name, &histogram)) {
    histogram = new LinearHistogram(name, minimum, maximum, bucket_count);
    StatisticsRecorder::FindHistogram(name, &histogram);
  }

  DCHECK_EQ(LINEAR_HISTOGRAM, histogram->histogram_type());
  DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count));
  histogram->SetFlags(flags);
  return histogram;
}

scoped_refptr<Histogram> LinearHistogram::FactoryTimeGet(
    const std::string& name,
    TimeDelta minimum,
    TimeDelta maximum,
    size_t bucket_count,
    Flags flags) {
  return FactoryGet(name, minimum.InMilliseconds(), maximum.InMilliseconds(),
                    bucket_count, flags);
}

LinearHistogram::~LinearHistogram() {
}

LinearHistogram::LinearHistogram(const std::string& name,
                                 Sample minimum,
                                 Sample maximum,
                                 size_t bucket_count)
    : Histogram(name, minimum >= 1 ? minimum : 1, maximum, bucket_count) {
  InitializeBucketRange();
  DCHECK(ValidateBucketRanges());
}

LinearHistogram::LinearHistogram(const std::string& name,
                                 TimeDelta minimum,
                                 TimeDelta maximum,
                                 size_t bucket_count)
    : Histogram(name, minimum >= TimeDelta::FromMilliseconds(1) ?
                                 minimum : TimeDelta::FromMilliseconds(1),
                maximum, bucket_count) {
  // Do a "better" (different) job at init than a base classes did...
  InitializeBucketRange();
  DCHECK(ValidateBucketRanges());
}

Histogram::ClassType LinearHistogram::histogram_type() const {
  return LINEAR_HISTOGRAM;
}

void LinearHistogram::SetRangeDescriptions(
    const DescriptionPair descriptions[]) {
  for (int i =0; descriptions[i].description; ++i) {
    bucket_description_[descriptions[i].sample] = descriptions[i].description;
  }
}

const std::string LinearHistogram::GetAsciiBucketRange(size_t i) const {
  int range = ranges(i);
  BucketDescriptionMap::const_iterator it = bucket_description_.find(range);
  if (it == bucket_description_.end())
    return Histogram::GetAsciiBucketRange(i);
  return it->second;
}

bool LinearHistogram::PrintEmptyBucket(size_t index) const {
  return bucket_description_.find(ranges(index)) == bucket_description_.end();
}


void LinearHistogram::InitializeBucketRange() {
  DCHECK_GT(declared_min(), 0);  // 0 is the underflow bucket here.
  double min = declared_min();
  double max = declared_max();
  size_t i;
  for (i = 1; i < bucket_count(); ++i) {
    double linear_range = (min * (bucket_count() -1 - i) + max * (i - 1)) /
                          (bucket_count() - 2);
    SetBucketRange(i, static_cast<int> (linear_range + 0.5));
  }
  ResetRangeChecksum();
}

double LinearHistogram::GetBucketSize(Count current, size_t i) const {
  DCHECK_GT(ranges(i + 1), ranges(i));
  // Adjacent buckets with different widths would have "surprisingly" many (few)
  // samples in a histogram if we didn't normalize this way.
  double denominator = ranges(i + 1) - ranges(i);
  return current/denominator;
}

//------------------------------------------------------------------------------
// This section provides implementation for BooleanHistogram.
//------------------------------------------------------------------------------

scoped_refptr<Histogram> BooleanHistogram::FactoryGet(const std::string& name,
                                                      Flags flags) {
  scoped_refptr<Histogram> histogram(NULL);

  if (!StatisticsRecorder::FindHistogram(name, &histogram)) {
    histogram = new BooleanHistogram(name);
    StatisticsRecorder::FindHistogram(name, &histogram);
  }

  DCHECK_EQ(BOOLEAN_HISTOGRAM, histogram->histogram_type());
  histogram->SetFlags(flags);
  return histogram;
}

Histogram::ClassType BooleanHistogram::histogram_type() const {
  return BOOLEAN_HISTOGRAM;
}

void BooleanHistogram::AddBoolean(bool value) {
  Add(value ? 1 : 0);
}

BooleanHistogram::BooleanHistogram(const std::string& name)
    : LinearHistogram(name, 1, 2, 3) {
}

//------------------------------------------------------------------------------
// CustomHistogram:
//------------------------------------------------------------------------------

scoped_refptr<Histogram> CustomHistogram::FactoryGet(
    const std::string& name,
    const std::vector<Sample>& custom_ranges,
    Flags flags) {
  scoped_refptr<Histogram> histogram(NULL);

  // Remove the duplicates in the custom ranges array.
  std::vector<int> ranges = custom_ranges;
  ranges.push_back(0);  // Ensure we have a zero value.
  std::sort(ranges.begin(), ranges.end());
  ranges.erase(std::unique(ranges.begin(), ranges.end()), ranges.end());
  if (ranges.size() <= 1) {
    DCHECK(false);
    // Note that we pushed a 0 in above, so for defensive code....
    ranges.push_back(1);  // Put in some data so we can index to [1].
  }

  DCHECK_LT(ranges.back(), kSampleType_MAX);

  if (!StatisticsRecorder::FindHistogram(name, &histogram)) {
    histogram = new CustomHistogram(name, ranges);
    StatisticsRecorder::FindHistogram(name, &histogram);
  }

  DCHECK_EQ(histogram->histogram_type(), CUSTOM_HISTOGRAM);
  DCHECK(histogram->HasConstructorArguments(ranges[1], ranges.back(),
                                            ranges.size()));
  histogram->SetFlags(flags);
  return histogram;
}

Histogram::ClassType CustomHistogram::histogram_type() const {
  return CUSTOM_HISTOGRAM;
}

CustomHistogram::CustomHistogram(const std::string& name,
                                 const std::vector<Sample>& custom_ranges)
    : Histogram(name, custom_ranges[1], custom_ranges.back(),
                custom_ranges.size()) {
  DCHECK_GT(custom_ranges.size(), 1u);
  DCHECK_EQ(custom_ranges[0], 0);
  ranges_vector_ = &custom_ranges;
  InitializeBucketRange();
  ranges_vector_ = NULL;
  DCHECK(ValidateBucketRanges());
}

void CustomHistogram::InitializeBucketRange() {
  DCHECK_LE(ranges_vector_->size(), bucket_count());
  for (size_t index = 0; index < ranges_vector_->size(); ++index)
    SetBucketRange(index, (*ranges_vector_)[index]);
  ResetRangeChecksum();
}

double CustomHistogram::GetBucketSize(Count current, size_t i) const {
  return 1;
}

//------------------------------------------------------------------------------
// The next section handles global (central) support for all histograms, as well
// as startup/teardown of this service.
//------------------------------------------------------------------------------

// This singleton instance should be started during the single threaded portion
// of main(), and hence it is not thread safe.  It initializes globals to
// provide support for all future calls.
StatisticsRecorder::StatisticsRecorder() {
  DCHECK(!histograms_);
  if (lock_ == NULL) {
    // This will leak on purpose. It's the only way to make sure we won't race
    // against the static uninitialization of the module while one of our
    // static methods relying on the lock get called at an inappropriate time
    // during the termination phase. Since it's a static data member, we will
    // leak one per process, which would be similar to the instance allocated
    // during static initialization and released only on  process termination.
    lock_ = new base::Lock;
  }
  base::AutoLock auto_lock(*lock_);
  histograms_ = new HistogramMap;
}

StatisticsRecorder::~StatisticsRecorder() {
  DCHECK(histograms_ && lock_);

  if (dump_on_exit_) {
    std::string output;
    WriteGraph("", &output);
    LOG(INFO) << output;
  }
  // Clean up.
  HistogramMap* histograms = NULL;
  {
    base::AutoLock auto_lock(*lock_);
    histograms = histograms_;
    histograms_ = NULL;
  }
  delete histograms;
  // We don't delete lock_ on purpose to avoid having to properly protect
  // against it going away after we checked for NULL in the static methods.
}

// static
bool StatisticsRecorder::IsActive() {
  if (lock_ == NULL)
    return false;
  base::AutoLock auto_lock(*lock_);
  return NULL != histograms_;
}

// Note: We can't accept a ref_ptr to |histogram| because we *might* not keep a
// reference, and we are called while in the Histogram constructor. In that
// scenario, a ref_ptr would have incremented the ref count when the histogram
// was passed to us, decremented it when we returned, and the instance would be
// destroyed before assignment (when value was returned by new).
// static
void StatisticsRecorder::Register(Histogram* histogram) {
  if (lock_ == NULL)
    return;
  base::AutoLock auto_lock(*lock_);
  if (!histograms_)
    return;
  const std::string name = histogram->histogram_name();
  // Avoid overwriting a previous registration.
  if (histograms_->end() == histograms_->find(name))
    (*histograms_)[name] = histogram;
}

// static
void StatisticsRecorder::WriteHTMLGraph(const std::string& query,
                                        std::string* output) {
  if (!IsActive())
    return;
  output->append("<html><head><title>About Histograms");
  if (!query.empty())
    output->append(" - " + query);
  output->append("</title>"
                 // We'd like the following no-cache... but it doesn't work.
                 // "<META HTTP-EQUIV=\"Pragma\" CONTENT=\"no-cache\">"
                 "</head><body>");

  Histograms snapshot;
  GetSnapshot(query, &snapshot);
  for (Histograms::iterator it = snapshot.begin();
       it != snapshot.end();
       ++it) {
    (*it)->WriteHTMLGraph(output);
    output->append("<br><hr><br>");
  }
  output->append("</body></html>");
}

// static
void StatisticsRecorder::WriteGraph(const std::string& query,
                                    std::string* output) {
  if (!IsActive())
    return;
  if (query.length())
    StringAppendF(output, "Collections of histograms for %s\n", query.c_str());
  else
    output->append("Collections of all histograms\n");

  Histograms snapshot;
  GetSnapshot(query, &snapshot);
  for (Histograms::iterator it = snapshot.begin();
       it != snapshot.end();
       ++it) {
    (*it)->WriteAscii(true, "\n", output);
    output->append("\n");
  }
}

// static
void StatisticsRecorder::GetHistograms(Histograms* output) {
  if (lock_ == NULL)
    return;
  base::AutoLock auto_lock(*lock_);
  if (!histograms_)
    return;
  for (HistogramMap::iterator it = histograms_->begin();
       histograms_->end() != it;
       ++it) {
    DCHECK_EQ(it->first, it->second->histogram_name());
    output->push_back(it->second);
  }
}

bool StatisticsRecorder::FindHistogram(const std::string& name,
                                       scoped_refptr<Histogram>* histogram) {
  if (lock_ == NULL)
    return false;
  base::AutoLock auto_lock(*lock_);
  if (!histograms_)
    return false;
  HistogramMap::iterator it = histograms_->find(name);
  if (histograms_->end() == it)
    return false;
  *histogram = it->second;
  return true;
}

// private static
void StatisticsRecorder::GetSnapshot(const std::string& query,
                                     Histograms* snapshot) {
  if (lock_ == NULL)
    return;
  base::AutoLock auto_lock(*lock_);
  if (!histograms_)
    return;
  for (HistogramMap::iterator it = histograms_->begin();
       histograms_->end() != it;
       ++it) {
    if (it->first.find(query) != std::string::npos)
      snapshot->push_back(it->second);
  }
}

// static
StatisticsRecorder::HistogramMap* StatisticsRecorder::histograms_ = NULL;
// static
base::Lock* StatisticsRecorder::lock_ = NULL;
// static
bool StatisticsRecorder::dump_on_exit_ = false;

}  // namespace base