1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <limits>
#include <set>
#include "base/command_line.h"
#include "base/compiler_specific.h"
#include "base/debug/stack_trace.h"
#include "base/dir_reader_posix.h"
#include "base/eintr_wrapper.h"
#include "base/file_util.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/process_util.h"
#include "base/stringprintf.h"
#include "base/synchronization/waitable_event.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread_restrictions.h"
#include "base/time.h"
#if defined(OS_MACOSX)
#include <crt_externs.h>
#include <sys/event.h>
#define environ (*_NSGetEnviron())
#else
extern char** environ;
#endif
#ifdef ANDROID
// No ucontext.h on Android
typedef void ucontext_t;
#endif
namespace base {
namespace {
int WaitpidWithTimeout(ProcessHandle handle, int64 wait_milliseconds,
bool* success) {
// This POSIX version of this function only guarantees that we wait no less
// than |wait_milliseconds| for the process to exit. The child process may
// exit sometime before the timeout has ended but we may still block for up
// to 256 milliseconds after the fact.
//
// waitpid() has no direct support on POSIX for specifying a timeout, you can
// either ask it to block indefinitely or return immediately (WNOHANG).
// When a child process terminates a SIGCHLD signal is sent to the parent.
// Catching this signal would involve installing a signal handler which may
// affect other parts of the application and would be difficult to debug.
//
// Our strategy is to call waitpid() once up front to check if the process
// has already exited, otherwise to loop for wait_milliseconds, sleeping for
// at most 256 milliseconds each time using usleep() and then calling
// waitpid(). The amount of time we sleep starts out at 1 milliseconds, and
// we double it every 4 sleep cycles.
//
// usleep() is speced to exit if a signal is received for which a handler
// has been installed. This means that when a SIGCHLD is sent, it will exit
// depending on behavior external to this function.
//
// This function is used primarily for unit tests, if we want to use it in
// the application itself it would probably be best to examine other routes.
int status = -1;
pid_t ret_pid = HANDLE_EINTR(waitpid(handle, &status, WNOHANG));
static const int64 kMaxSleepInMicroseconds = 1 << 18; // ~256 milliseconds.
int64 max_sleep_time_usecs = 1 << 10; // ~1 milliseconds.
int64 double_sleep_time = 0;
// If the process hasn't exited yet, then sleep and try again.
Time wakeup_time = Time::Now() +
TimeDelta::FromMilliseconds(wait_milliseconds);
while (ret_pid == 0) {
Time now = Time::Now();
if (now > wakeup_time)
break;
// Guaranteed to be non-negative!
int64 sleep_time_usecs = (wakeup_time - now).InMicroseconds();
// Sleep for a bit while we wait for the process to finish.
if (sleep_time_usecs > max_sleep_time_usecs)
sleep_time_usecs = max_sleep_time_usecs;
// usleep() will return 0 and set errno to EINTR on receipt of a signal
// such as SIGCHLD.
usleep(sleep_time_usecs);
ret_pid = HANDLE_EINTR(waitpid(handle, &status, WNOHANG));
if ((max_sleep_time_usecs < kMaxSleepInMicroseconds) &&
(double_sleep_time++ % 4 == 0)) {
max_sleep_time_usecs *= 2;
}
}
if (success)
*success = (ret_pid != -1);
return status;
}
void StackDumpSignalHandler(int signal, siginfo_t* info, ucontext_t* context) {
LOG(ERROR) << "Received signal " << signal;
debug::StackTrace().PrintBacktrace();
// TODO(shess): Port to Linux.
#if defined(OS_MACOSX)
// TODO(shess): Port to 64-bit.
#if ARCH_CPU_32_BITS
char buf[1024];
size_t len;
// NOTE: Even |snprintf()| is not on the approved list for signal
// handlers, but buffered I/O is definitely not on the list due to
// potential for |malloc()|.
len = static_cast<size_t>(
snprintf(buf, sizeof(buf),
"ax: %x, bx: %x, cx: %x, dx: %x\n",
context->uc_mcontext->__ss.__eax,
context->uc_mcontext->__ss.__ebx,
context->uc_mcontext->__ss.__ecx,
context->uc_mcontext->__ss.__edx));
write(STDERR_FILENO, buf, std::min(len, sizeof(buf) - 1));
len = static_cast<size_t>(
snprintf(buf, sizeof(buf),
"di: %x, si: %x, bp: %x, sp: %x, ss: %x, flags: %x\n",
context->uc_mcontext->__ss.__edi,
context->uc_mcontext->__ss.__esi,
context->uc_mcontext->__ss.__ebp,
context->uc_mcontext->__ss.__esp,
context->uc_mcontext->__ss.__ss,
context->uc_mcontext->__ss.__eflags));
write(STDERR_FILENO, buf, std::min(len, sizeof(buf) - 1));
len = static_cast<size_t>(
snprintf(buf, sizeof(buf),
"ip: %x, cs: %x, ds: %x, es: %x, fs: %x, gs: %x\n",
context->uc_mcontext->__ss.__eip,
context->uc_mcontext->__ss.__cs,
context->uc_mcontext->__ss.__ds,
context->uc_mcontext->__ss.__es,
context->uc_mcontext->__ss.__fs,
context->uc_mcontext->__ss.__gs));
write(STDERR_FILENO, buf, std::min(len, sizeof(buf) - 1));
#endif // ARCH_CPU_32_BITS
#endif // defined(OS_MACOSX)
_exit(1);
}
void ResetChildSignalHandlersToDefaults() {
// The previous signal handlers are likely to be meaningless in the child's
// context so we reset them to the defaults for now. http://crbug.com/44953
// These signal handlers are set up at least in browser_main.cc:BrowserMain
// and process_util_posix.cc:EnableInProcessStackDumping.
signal(SIGHUP, SIG_DFL);
signal(SIGINT, SIG_DFL);
signal(SIGILL, SIG_DFL);
signal(SIGABRT, SIG_DFL);
signal(SIGFPE, SIG_DFL);
signal(SIGBUS, SIG_DFL);
signal(SIGSEGV, SIG_DFL);
signal(SIGSYS, SIG_DFL);
signal(SIGTERM, SIG_DFL);
}
} // anonymous namespace
ProcessId GetCurrentProcId() {
return getpid();
}
ProcessHandle GetCurrentProcessHandle() {
return GetCurrentProcId();
}
bool OpenProcessHandle(ProcessId pid, ProcessHandle* handle) {
// On Posix platforms, process handles are the same as PIDs, so we
// don't need to do anything.
*handle = pid;
return true;
}
bool OpenPrivilegedProcessHandle(ProcessId pid, ProcessHandle* handle) {
// On POSIX permissions are checked for each operation on process,
// not when opening a "handle".
return OpenProcessHandle(pid, handle);
}
bool OpenProcessHandleWithAccess(ProcessId pid,
uint32 access_flags,
ProcessHandle* handle) {
// On POSIX permissions are checked for each operation on process,
// not when opening a "handle".
return OpenProcessHandle(pid, handle);
}
void CloseProcessHandle(ProcessHandle process) {
// See OpenProcessHandle, nothing to do.
return;
}
ProcessId GetProcId(ProcessHandle process) {
return process;
}
// Attempts to kill the process identified by the given process
// entry structure. Ignores specified exit_code; posix can't force that.
// Returns true if this is successful, false otherwise.
bool KillProcess(ProcessHandle process_id, int exit_code, bool wait) {
DCHECK_GT(process_id, 1) << " tried to kill invalid process_id";
if (process_id <= 1)
return false;
static unsigned kMaxSleepMs = 1000;
unsigned sleep_ms = 4;
bool result = kill(process_id, SIGTERM) == 0;
if (result && wait) {
int tries = 60;
// The process may not end immediately due to pending I/O
bool exited = false;
while (tries-- > 0) {
pid_t pid = HANDLE_EINTR(waitpid(process_id, NULL, WNOHANG));
if (pid == process_id) {
exited = true;
break;
}
if (pid == -1) {
if (errno == ECHILD) {
// The wait may fail with ECHILD if another process also waited for
// the same pid, causing the process state to get cleaned up.
exited = true;
break;
}
DPLOG(ERROR) << "Error waiting for process " << process_id;
}
usleep(sleep_ms * 1000);
if (sleep_ms < kMaxSleepMs)
sleep_ms *= 2;
}
// If we're waiting and the child hasn't died by now, force it
// with a SIGKILL.
if (!exited)
result = kill(process_id, SIGKILL) == 0;
}
if (!result)
DPLOG(ERROR) << "Unable to terminate process " << process_id;
return result;
}
bool KillProcessGroup(ProcessHandle process_group_id) {
bool result = kill(-1 * process_group_id, SIGKILL) == 0;
if (!result)
PLOG(ERROR) << "Unable to terminate process group " << process_group_id;
return result;
}
// A class to handle auto-closing of DIR*'s.
class ScopedDIRClose {
public:
inline void operator()(DIR* x) const {
if (x) {
closedir(x);
}
}
};
typedef scoped_ptr_malloc<DIR, ScopedDIRClose> ScopedDIR;
#if defined(OS_LINUX)
static const rlim_t kSystemDefaultMaxFds = 8192;
static const char kFDDir[] = "/proc/self/fd";
#elif defined(OS_MACOSX)
static const rlim_t kSystemDefaultMaxFds = 256;
static const char kFDDir[] = "/dev/fd";
#elif defined(OS_SOLARIS)
static const rlim_t kSystemDefaultMaxFds = 8192;
static const char kFDDir[] = "/dev/fd";
#elif defined(OS_FREEBSD)
static const rlim_t kSystemDefaultMaxFds = 8192;
static const char kFDDir[] = "/dev/fd";
#elif defined(OS_OPENBSD)
static const rlim_t kSystemDefaultMaxFds = 256;
static const char kFDDir[] = "/dev/fd";
#endif
void CloseSuperfluousFds(const base::InjectiveMultimap& saved_mapping) {
// DANGER: no calls to malloc are allowed from now on:
// http://crbug.com/36678
// Get the maximum number of FDs possible.
struct rlimit nofile;
rlim_t max_fds;
if (getrlimit(RLIMIT_NOFILE, &nofile)) {
// getrlimit failed. Take a best guess.
max_fds = kSystemDefaultMaxFds;
RAW_LOG(ERROR, "getrlimit(RLIMIT_NOFILE) failed");
} else {
max_fds = nofile.rlim_cur;
}
if (max_fds > INT_MAX)
max_fds = INT_MAX;
DirReaderPosix fd_dir(kFDDir);
if (!fd_dir.IsValid()) {
// Fallback case: Try every possible fd.
for (rlim_t i = 0; i < max_fds; ++i) {
const int fd = static_cast<int>(i);
if (fd == STDIN_FILENO || fd == STDOUT_FILENO || fd == STDERR_FILENO)
continue;
InjectiveMultimap::const_iterator j;
for (j = saved_mapping.begin(); j != saved_mapping.end(); j++) {
if (fd == j->dest)
break;
}
if (j != saved_mapping.end())
continue;
// Since we're just trying to close anything we can find,
// ignore any error return values of close().
ignore_result(HANDLE_EINTR(close(fd)));
}
return;
}
const int dir_fd = fd_dir.fd();
for ( ; fd_dir.Next(); ) {
// Skip . and .. entries.
if (fd_dir.name()[0] == '.')
continue;
char *endptr;
errno = 0;
const long int fd = strtol(fd_dir.name(), &endptr, 10);
if (fd_dir.name()[0] == 0 || *endptr || fd < 0 || errno)
continue;
if (fd == STDIN_FILENO || fd == STDOUT_FILENO || fd == STDERR_FILENO)
continue;
InjectiveMultimap::const_iterator i;
for (i = saved_mapping.begin(); i != saved_mapping.end(); i++) {
if (fd == i->dest)
break;
}
if (i != saved_mapping.end())
continue;
if (fd == dir_fd)
continue;
// When running under Valgrind, Valgrind opens several FDs for its
// own use and will complain if we try to close them. All of
// these FDs are >= |max_fds|, so we can check against that here
// before closing. See https://bugs.kde.org/show_bug.cgi?id=191758
if (fd < static_cast<int>(max_fds)) {
int ret = HANDLE_EINTR(close(fd));
DPCHECK(ret == 0);
}
}
}
char** AlterEnvironment(const environment_vector& changes,
const char* const* const env) {
unsigned count = 0;
unsigned size = 0;
// First assume that all of the current environment will be included.
for (unsigned i = 0; env[i]; i++) {
const char *const pair = env[i];
count++;
size += strlen(pair) + 1 /* terminating NUL */;
}
for (environment_vector::const_iterator
j = changes.begin(); j != changes.end(); j++) {
bool found = false;
const char *pair;
for (unsigned i = 0; env[i]; i++) {
pair = env[i];
const char *const equals = strchr(pair, '=');
if (!equals)
continue;
const unsigned keylen = equals - pair;
if (keylen == j->first.size() &&
memcmp(pair, j->first.data(), keylen) == 0) {
found = true;
break;
}
}
// if found, we'll either be deleting or replacing this element.
if (found) {
count--;
size -= strlen(pair) + 1;
if (j->second.size())
found = false;
}
// if !found, then we have a new element to add.
if (!found && !j->second.empty()) {
count++;
size += j->first.size() + 1 /* '=' */ + j->second.size() + 1 /* NUL */;
}
}
count++; // for the final NULL
uint8_t *buffer = new uint8_t[sizeof(char*) * count + size];
char **const ret = reinterpret_cast<char**>(buffer);
unsigned k = 0;
char *scratch = reinterpret_cast<char*>(buffer + sizeof(char*) * count);
for (unsigned i = 0; env[i]; i++) {
const char *const pair = env[i];
const char *const equals = strchr(pair, '=');
if (!equals) {
const unsigned len = strlen(pair);
ret[k++] = scratch;
memcpy(scratch, pair, len + 1);
scratch += len + 1;
continue;
}
const unsigned keylen = equals - pair;
bool handled = false;
for (environment_vector::const_iterator
j = changes.begin(); j != changes.end(); j++) {
if (j->first.size() == keylen &&
memcmp(j->first.data(), pair, keylen) == 0) {
if (!j->second.empty()) {
ret[k++] = scratch;
memcpy(scratch, pair, keylen + 1);
scratch += keylen + 1;
memcpy(scratch, j->second.c_str(), j->second.size() + 1);
scratch += j->second.size() + 1;
}
handled = true;
break;
}
}
if (!handled) {
const unsigned len = strlen(pair);
ret[k++] = scratch;
memcpy(scratch, pair, len + 1);
scratch += len + 1;
}
}
// Now handle new elements
for (environment_vector::const_iterator
j = changes.begin(); j != changes.end(); j++) {
if (j->second.empty())
continue;
bool found = false;
for (unsigned i = 0; env[i]; i++) {
const char *const pair = env[i];
const char *const equals = strchr(pair, '=');
if (!equals)
continue;
const unsigned keylen = equals - pair;
if (keylen == j->first.size() &&
memcmp(pair, j->first.data(), keylen) == 0) {
found = true;
break;
}
}
if (!found) {
ret[k++] = scratch;
memcpy(scratch, j->first.data(), j->first.size());
scratch += j->first.size();
*scratch++ = '=';
memcpy(scratch, j->second.c_str(), j->second.size() + 1);
scratch += j->second.size() + 1;
}
}
ret[k] = NULL;
return ret;
}
bool LaunchAppImpl(
const std::vector<std::string>& argv,
const environment_vector& env_changes,
const file_handle_mapping_vector& fds_to_remap,
bool wait,
ProcessHandle* process_handle,
bool start_new_process_group) {
pid_t pid;
InjectiveMultimap fd_shuffle1, fd_shuffle2;
fd_shuffle1.reserve(fds_to_remap.size());
fd_shuffle2.reserve(fds_to_remap.size());
scoped_array<char*> argv_cstr(new char*[argv.size() + 1]);
scoped_array<char*> new_environ(AlterEnvironment(env_changes, environ));
pid = fork();
if (pid < 0) {
PLOG(ERROR) << "fork";
return false;
}
if (pid == 0) {
// Child process
// DANGER: fork() rule: in the child, if you don't end up doing exec*(),
// you call _exit() instead of exit(). This is because _exit() does not
// call any previously-registered (in the parent) exit handlers, which
// might do things like block waiting for threads that don't even exist
// in the child.
// If a child process uses the readline library, the process block forever.
// In BSD like OSes including OS X it is safe to assign /dev/null as stdin.
// See http://crbug.com/56596.
int null_fd = HANDLE_EINTR(open("/dev/null", O_RDONLY));
if (null_fd < 0) {
RAW_LOG(ERROR, "Failed to open /dev/null");
_exit(127);
}
file_util::ScopedFD null_fd_closer(&null_fd);
int new_fd = HANDLE_EINTR(dup2(null_fd, STDIN_FILENO));
if (new_fd != STDIN_FILENO) {
RAW_LOG(ERROR, "Failed to dup /dev/null for stdin");
_exit(127);
}
if (start_new_process_group) {
// Instead of inheriting the process group ID of the parent, the child
// starts off a new process group with pgid equal to its process ID.
if (setpgid(0, 0) < 0) {
RAW_LOG(ERROR, "setpgid failed");
_exit(127);
}
}
#if defined(OS_MACOSX)
RestoreDefaultExceptionHandler();
#endif
ResetChildSignalHandlersToDefaults();
#if 0
// When debugging it can be helpful to check that we really aren't making
// any hidden calls to malloc.
void *malloc_thunk =
reinterpret_cast<void*>(reinterpret_cast<intptr_t>(malloc) & ~4095);
mprotect(malloc_thunk, 4096, PROT_READ | PROT_WRITE | PROT_EXEC);
memset(reinterpret_cast<void*>(malloc), 0xff, 8);
#endif
// DANGER: no calls to malloc are allowed from now on:
// http://crbug.com/36678
for (file_handle_mapping_vector::const_iterator
it = fds_to_remap.begin(); it != fds_to_remap.end(); ++it) {
fd_shuffle1.push_back(InjectionArc(it->first, it->second, false));
fd_shuffle2.push_back(InjectionArc(it->first, it->second, false));
}
environ = new_environ.get();
// fd_shuffle1 is mutated by this call because it cannot malloc.
if (!ShuffleFileDescriptors(&fd_shuffle1))
_exit(127);
CloseSuperfluousFds(fd_shuffle2);
for (size_t i = 0; i < argv.size(); i++)
argv_cstr[i] = const_cast<char*>(argv[i].c_str());
argv_cstr[argv.size()] = NULL;
execvp(argv_cstr[0], argv_cstr.get());
RAW_LOG(ERROR, "LaunchApp: failed to execvp:");
RAW_LOG(ERROR, argv_cstr[0]);
_exit(127);
} else {
// Parent process
if (wait) {
// While this isn't strictly disk IO, waiting for another process to
// finish is the sort of thing ThreadRestrictions is trying to prevent.
base::ThreadRestrictions::AssertIOAllowed();
pid_t ret = HANDLE_EINTR(waitpid(pid, 0, 0));
DPCHECK(ret > 0);
}
if (process_handle)
*process_handle = pid;
}
return true;
}
bool LaunchApp(
const std::vector<std::string>& argv,
const environment_vector& env_changes,
const file_handle_mapping_vector& fds_to_remap,
bool wait,
ProcessHandle* process_handle) {
return LaunchAppImpl(argv, env_changes, fds_to_remap,
wait, process_handle, false);
}
bool LaunchAppInNewProcessGroup(
const std::vector<std::string>& argv,
const environment_vector& env_changes,
const file_handle_mapping_vector& fds_to_remap,
bool wait,
ProcessHandle* process_handle) {
return LaunchAppImpl(argv, env_changes, fds_to_remap, wait,
process_handle, true);
}
bool LaunchApp(const std::vector<std::string>& argv,
const file_handle_mapping_vector& fds_to_remap,
bool wait, ProcessHandle* process_handle) {
base::environment_vector no_env;
return LaunchApp(argv, no_env, fds_to_remap, wait, process_handle);
}
bool LaunchApp(const CommandLine& cl,
bool wait, bool start_hidden,
ProcessHandle* process_handle) {
file_handle_mapping_vector no_files;
return LaunchApp(cl.argv(), no_files, wait, process_handle);
}
ProcessMetrics::~ProcessMetrics() { }
void EnableTerminationOnHeapCorruption() {
// On POSIX, there nothing to do AFAIK.
}
bool EnableInProcessStackDumping() {
// When running in an application, our code typically expects SIGPIPE
// to be ignored. Therefore, when testing that same code, it should run
// with SIGPIPE ignored as well.
struct sigaction action;
action.sa_handler = SIG_IGN;
action.sa_flags = 0;
sigemptyset(&action.sa_mask);
bool success = (sigaction(SIGPIPE, &action, NULL) == 0);
sig_t handler = reinterpret_cast<sig_t>(&StackDumpSignalHandler);
success &= (signal(SIGILL, handler) != SIG_ERR);
success &= (signal(SIGABRT, handler) != SIG_ERR);
success &= (signal(SIGFPE, handler) != SIG_ERR);
success &= (signal(SIGBUS, handler) != SIG_ERR);
success &= (signal(SIGSEGV, handler) != SIG_ERR);
success &= (signal(SIGSYS, handler) != SIG_ERR);
return success;
}
void RaiseProcessToHighPriority() {
// On POSIX, we don't actually do anything here. We could try to nice() or
// setpriority() or sched_getscheduler, but these all require extra rights.
}
TerminationStatus GetTerminationStatus(ProcessHandle handle, int* exit_code) {
int status = 0;
const pid_t result = HANDLE_EINTR(waitpid(handle, &status, WNOHANG));
if (result == -1) {
PLOG(ERROR) << "waitpid(" << handle << ")";
if (exit_code)
*exit_code = 0;
return TERMINATION_STATUS_NORMAL_TERMINATION;
} else if (result == 0) {
// the child hasn't exited yet.
if (exit_code)
*exit_code = 0;
return TERMINATION_STATUS_STILL_RUNNING;
}
if (exit_code)
*exit_code = status;
if (WIFSIGNALED(status)) {
switch (WTERMSIG(status)) {
case SIGABRT:
case SIGBUS:
case SIGFPE:
case SIGILL:
case SIGSEGV:
return TERMINATION_STATUS_PROCESS_CRASHED;
case SIGINT:
case SIGKILL:
case SIGTERM:
return TERMINATION_STATUS_PROCESS_WAS_KILLED;
default:
break;
}
}
if (WIFEXITED(status) && WEXITSTATUS(status) != 0)
return TERMINATION_STATUS_ABNORMAL_TERMINATION;
return TERMINATION_STATUS_NORMAL_TERMINATION;
}
bool WaitForExitCode(ProcessHandle handle, int* exit_code) {
int status;
if (HANDLE_EINTR(waitpid(handle, &status, 0)) == -1) {
NOTREACHED();
return false;
}
if (WIFEXITED(status)) {
*exit_code = WEXITSTATUS(status);
return true;
}
// If it didn't exit cleanly, it must have been signaled.
DCHECK(WIFSIGNALED(status));
return false;
}
bool WaitForExitCodeWithTimeout(ProcessHandle handle, int* exit_code,
int64 timeout_milliseconds) {
bool waitpid_success = false;
int status = WaitpidWithTimeout(handle, timeout_milliseconds,
&waitpid_success);
if (status == -1)
return false;
if (!waitpid_success)
return false;
if (WIFSIGNALED(status)) {
*exit_code = -1;
return true;
}
if (WIFEXITED(status)) {
*exit_code = WEXITSTATUS(status);
return true;
}
return false;
}
#if defined(OS_MACOSX)
// Using kqueue on Mac so that we can wait on non-child processes.
// We can't use kqueues on child processes because we need to reap
// our own children using wait.
static bool WaitForSingleNonChildProcess(ProcessHandle handle,
int64 wait_milliseconds) {
int kq = kqueue();
if (kq == -1) {
PLOG(ERROR) << "kqueue";
return false;
}
struct kevent change = { 0 };
EV_SET(&change, handle, EVFILT_PROC, EV_ADD, NOTE_EXIT, 0, NULL);
struct timespec spec;
struct timespec *spec_ptr;
if (wait_milliseconds != base::kNoTimeout) {
time_t sec = static_cast<time_t>(wait_milliseconds / 1000);
wait_milliseconds = wait_milliseconds - (sec * 1000);
spec.tv_sec = sec;
spec.tv_nsec = wait_milliseconds * 1000000L;
spec_ptr = &spec;
} else {
spec_ptr = NULL;
}
while(true) {
struct kevent event = { 0 };
int event_count = HANDLE_EINTR(kevent(kq, &change, 1, &event, 1, spec_ptr));
if (close(kq) != 0) {
PLOG(ERROR) << "close";
}
if (event_count < 0) {
PLOG(ERROR) << "kevent";
return false;
} else if (event_count == 0) {
if (wait_milliseconds != base::kNoTimeout) {
// Timed out.
return false;
}
} else if ((event_count == 1) &&
(handle == static_cast<pid_t>(event.ident)) &&
(event.filter == EVFILT_PROC)) {
if (event.fflags == NOTE_EXIT) {
return true;
} else if (event.flags == EV_ERROR) {
LOG(ERROR) << "kevent error " << event.data;
return false;
} else {
NOTREACHED();
return false;
}
} else {
NOTREACHED();
return false;
}
}
}
#endif // OS_MACOSX
bool WaitForSingleProcess(ProcessHandle handle, int64 wait_milliseconds) {
ProcessHandle parent_pid = GetParentProcessId(handle);
ProcessHandle our_pid = Process::Current().handle();
if (parent_pid != our_pid) {
#if defined(OS_MACOSX)
// On Mac we can wait on non child processes.
return WaitForSingleNonChildProcess(handle, wait_milliseconds);
#else
// Currently on Linux we can't handle non child processes.
NOTIMPLEMENTED();
#endif // OS_MACOSX
}
bool waitpid_success;
int status;
if (wait_milliseconds == base::kNoTimeout)
waitpid_success = (HANDLE_EINTR(waitpid(handle, &status, 0)) != -1);
else
status = WaitpidWithTimeout(handle, wait_milliseconds, &waitpid_success);
if (status != -1) {
DCHECK(waitpid_success);
return WIFEXITED(status);
} else {
return false;
}
}
int64 TimeValToMicroseconds(const struct timeval& tv) {
static const int kMicrosecondsPerSecond = 1000000;
int64 ret = tv.tv_sec; // Avoid (int * int) integer overflow.
ret *= kMicrosecondsPerSecond;
ret += tv.tv_usec;
return ret;
}
// Executes the application specified by |cl| and wait for it to exit. Stores
// the output (stdout) in |output|. If |do_search_path| is set, it searches the
// path for the application; in that case, |envp| must be null, and it will use
// the current environment. If |do_search_path| is false, |cl| should fully
// specify the path of the application, and |envp| will be used as the
// environment. Redirects stderr to /dev/null. Returns true on success
// (application launched and exited cleanly, with exit code indicating success).
static bool GetAppOutputInternal(const CommandLine& cl, char* const envp[],
std::string* output, size_t max_output,
bool do_search_path) {
// Doing a blocking wait for another command to finish counts as IO.
base::ThreadRestrictions::AssertIOAllowed();
int pipe_fd[2];
pid_t pid;
InjectiveMultimap fd_shuffle1, fd_shuffle2;
const std::vector<std::string>& argv = cl.argv();
scoped_array<char*> argv_cstr(new char*[argv.size() + 1]);
fd_shuffle1.reserve(3);
fd_shuffle2.reserve(3);
// Either |do_search_path| should be false or |envp| should be null, but not
// both.
DCHECK(!do_search_path ^ !envp);
if (pipe(pipe_fd) < 0)
return false;
switch (pid = fork()) {
case -1: // error
close(pipe_fd[0]);
close(pipe_fd[1]);
return false;
case 0: // child
{
#if defined(OS_MACOSX)
RestoreDefaultExceptionHandler();
#endif
// DANGER: no calls to malloc are allowed from now on:
// http://crbug.com/36678
// Obscure fork() rule: in the child, if you don't end up doing exec*(),
// you call _exit() instead of exit(). This is because _exit() does not
// call any previously-registered (in the parent) exit handlers, which
// might do things like block waiting for threads that don't even exist
// in the child.
int dev_null = open("/dev/null", O_WRONLY);
if (dev_null < 0)
_exit(127);
fd_shuffle1.push_back(InjectionArc(pipe_fd[1], STDOUT_FILENO, true));
fd_shuffle1.push_back(InjectionArc(dev_null, STDERR_FILENO, true));
fd_shuffle1.push_back(InjectionArc(dev_null, STDIN_FILENO, true));
// Adding another element here? Remeber to increase the argument to
// reserve(), above.
std::copy(fd_shuffle1.begin(), fd_shuffle1.end(),
std::back_inserter(fd_shuffle2));
if (!ShuffleFileDescriptors(&fd_shuffle1))
_exit(127);
CloseSuperfluousFds(fd_shuffle2);
for (size_t i = 0; i < argv.size(); i++)
argv_cstr[i] = const_cast<char*>(argv[i].c_str());
argv_cstr[argv.size()] = NULL;
if (do_search_path)
execvp(argv_cstr[0], argv_cstr.get());
else
execve(argv_cstr[0], argv_cstr.get(), envp);
_exit(127);
}
default: // parent
{
// Close our writing end of pipe now. Otherwise later read would not
// be able to detect end of child's output (in theory we could still
// write to the pipe).
close(pipe_fd[1]);
output->clear();
char buffer[256];
size_t output_buf_left = max_output;
ssize_t bytes_read = 1; // A lie to properly handle |max_output == 0|
// case in the logic below.
while (output_buf_left > 0) {
bytes_read = HANDLE_EINTR(read(pipe_fd[0], buffer,
std::min(output_buf_left, sizeof(buffer))));
if (bytes_read <= 0)
break;
output->append(buffer, bytes_read);
output_buf_left -= static_cast<size_t>(bytes_read);
}
close(pipe_fd[0]);
// Always wait for exit code (even if we know we'll declare success).
int exit_code = EXIT_FAILURE;
bool success = WaitForExitCode(pid, &exit_code);
// If we stopped because we read as much as we wanted, we always declare
// success (because the child may exit due to |SIGPIPE|).
if (output_buf_left || bytes_read <= 0) {
if (!success || exit_code != EXIT_SUCCESS)
return false;
}
return true;
}
}
}
bool GetAppOutput(const CommandLine& cl, std::string* output) {
// Run |execve()| with the current environment and store "unlimited" data.
return GetAppOutputInternal(cl, NULL, output,
std::numeric_limits<std::size_t>::max(), true);
}
// TODO(viettrungluu): Conceivably, we should have a timeout as well, so we
// don't hang if what we're calling hangs.
bool GetAppOutputRestricted(const CommandLine& cl,
std::string* output, size_t max_output) {
// Run |execve()| with the empty environment.
char* const empty_environ = NULL;
return GetAppOutputInternal(cl, &empty_environ, output, max_output, false);
}
bool WaitForProcessesToExit(const FilePath::StringType& executable_name,
int64 wait_milliseconds,
const ProcessFilter* filter) {
bool result = false;
// TODO(port): This is inefficient, but works if there are multiple procs.
// TODO(port): use waitpid to avoid leaving zombies around
base::Time end_time = base::Time::Now() +
base::TimeDelta::FromMilliseconds(wait_milliseconds);
do {
NamedProcessIterator iter(executable_name, filter);
if (!iter.NextProcessEntry()) {
result = true;
break;
}
base::PlatformThread::Sleep(100);
} while ((base::Time::Now() - end_time) > base::TimeDelta());
return result;
}
bool CleanupProcesses(const FilePath::StringType& executable_name,
int64 wait_milliseconds,
int exit_code,
const ProcessFilter* filter) {
bool exited_cleanly =
WaitForProcessesToExit(executable_name, wait_milliseconds,
filter);
if (!exited_cleanly)
KillProcesses(executable_name, exit_code, filter);
return exited_cleanly;
}
} // namespace base
|