summaryrefslogtreecommitdiffstats
path: root/base/process_util_unittest.cc
blob: 1b7368a1fa5421b634366ea735e273bdf2864ad4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#define _CRT_SECURE_NO_WARNINGS

#include <limits>

#include "base/command_line.h"
#include "base/eintr_wrapper.h"
#include "base/file_path.h"
#include "base/logging.h"
#include "base/path_service.h"
#include "base/process_util.h"
#include "base/scoped_ptr.h"
#include "base/test/multiprocess_test.h"
#include "base/test/test_timeouts.h"
#include "base/threading/platform_thread.h"
#include "base/utf_string_conversions.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/multiprocess_func_list.h"

#if defined(OS_LINUX)
#include <errno.h>
#include <malloc.h>
#include <glib.h>
#endif
#if defined(OS_POSIX)
#include <dlfcn.h>
#include <fcntl.h>
#include <signal.h>
#include <sys/resource.h>
#include <sys/socket.h>
#endif
#if defined(OS_WIN)
#include <windows.h>
#endif
#if defined(OS_MACOSX)
#include <malloc/malloc.h>
#include "base/process_util_unittest_mac.h"
#endif

namespace {

#if defined(OS_WIN)
const wchar_t kProcessName[] = L"base_unittests.exe";
#else
const wchar_t kProcessName[] = L"base_unittests";
#endif  // defined(OS_WIN)

const char kSignalFileSlow[] = "SlowChildProcess.die";
const char kSignalFileCrash[] = "CrashingChildProcess.die";
const char kSignalFileKill[] = "KilledChildProcess.die";

#if defined(OS_WIN)
const int kExpectedStillRunningExitCode = 0x102;
const int kExpectedKilledExitCode = 1;
#else
const int kExpectedStillRunningExitCode = 0;
#endif

// The longest we'll wait for a process, in milliseconds.
const int kMaxWaitTimeMs = TestTimeouts::action_max_timeout_ms();

// Sleeps until file filename is created.
void WaitToDie(const char* filename) {
  FILE *fp;
  do {
    base::PlatformThread::Sleep(10);
    fp = fopen(filename, "r");
  } while (!fp);
  fclose(fp);
}

// Signals children they should die now.
void SignalChildren(const char* filename) {
  FILE *fp = fopen(filename, "w");
  fclose(fp);
}

// Using a pipe to the child to wait for an event was considered, but
// there were cases in the past where pipes caused problems (other
// libraries closing the fds, child deadlocking). This is a simple
// case, so it's not worth the risk.  Using wait loops is discouraged
// in most instances.
base::TerminationStatus WaitForChildTermination(base::ProcessHandle handle,
                                                int* exit_code) {
  // Now we wait until the result is something other than STILL_RUNNING.
  base::TerminationStatus status = base::TERMINATION_STATUS_STILL_RUNNING;
  const int kIntervalMs = 20;
  int waited = 0;
  do {
    status = base::GetTerminationStatus(handle, exit_code);
    base::PlatformThread::Sleep(kIntervalMs);
    waited += kIntervalMs;
  } while (status == base::TERMINATION_STATUS_STILL_RUNNING &&
           waited < kMaxWaitTimeMs);

  return status;
}

}  // namespace

class ProcessUtilTest : public base::MultiProcessTest {
#if defined(OS_POSIX)
 public:
  // Spawn a child process that counts how many file descriptors are open.
  int CountOpenFDsInChild();
#endif
};

MULTIPROCESS_TEST_MAIN(SimpleChildProcess) {
  return 0;
}

TEST_F(ProcessUtilTest, SpawnChild) {
  base::ProcessHandle handle = this->SpawnChild("SimpleChildProcess", false);
  ASSERT_NE(base::kNullProcessHandle, handle);
  EXPECT_TRUE(base::WaitForSingleProcess(handle, kMaxWaitTimeMs));
  base::CloseProcessHandle(handle);
}

MULTIPROCESS_TEST_MAIN(SlowChildProcess) {
  WaitToDie(kSignalFileSlow);
  return 0;
}

TEST_F(ProcessUtilTest, KillSlowChild) {
  remove(kSignalFileSlow);
  base::ProcessHandle handle = this->SpawnChild("SlowChildProcess", false);
  ASSERT_NE(base::kNullProcessHandle, handle);
  SignalChildren(kSignalFileSlow);
  EXPECT_TRUE(base::WaitForSingleProcess(handle, kMaxWaitTimeMs));
  base::CloseProcessHandle(handle);
  remove(kSignalFileSlow);
}

TEST_F(ProcessUtilTest, GetTerminationStatusExit) {
  remove(kSignalFileSlow);
  base::ProcessHandle handle = this->SpawnChild("SlowChildProcess", false);
  ASSERT_NE(base::kNullProcessHandle, handle);

  int exit_code = 42;
  EXPECT_EQ(base::TERMINATION_STATUS_STILL_RUNNING,
            base::GetTerminationStatus(handle, &exit_code));
  EXPECT_EQ(kExpectedStillRunningExitCode, exit_code);

  SignalChildren(kSignalFileSlow);
  exit_code = 42;
  base::TerminationStatus status =
      WaitForChildTermination(handle, &exit_code);
  EXPECT_EQ(base::TERMINATION_STATUS_NORMAL_TERMINATION, status);
  EXPECT_EQ(0, exit_code);
  base::CloseProcessHandle(handle);
  remove(kSignalFileSlow);
}

#if !defined(OS_MACOSX)
// This test is disabled on Mac, since it's flaky due to ReportCrash
// taking a variable amount of time to parse and load the debug and
// symbol data for this unit test's executable before firing the
// signal handler.
//
// TODO(gspencer): turn this test process into a very small program
// with no symbols (instead of using the multiprocess testing
// framework) to reduce the ReportCrash overhead.

MULTIPROCESS_TEST_MAIN(CrashingChildProcess) {
  WaitToDie(kSignalFileCrash);
#if defined(OS_POSIX)
  // Have to disable to signal handler for segv so we can get a crash
  // instead of an abnormal termination through the crash dump handler.
  ::signal(SIGSEGV, SIG_DFL);
#endif
  // Make this process have a segmentation fault.
  int* oops = NULL;
  *oops = 0xDEAD;
  return 1;
}

TEST_F(ProcessUtilTest, GetTerminationStatusCrash) {
  remove(kSignalFileCrash);
  base::ProcessHandle handle = this->SpawnChild("CrashingChildProcess",
                                                false);
  ASSERT_NE(base::kNullProcessHandle, handle);

  int exit_code = 42;
  EXPECT_EQ(base::TERMINATION_STATUS_STILL_RUNNING,
            base::GetTerminationStatus(handle, &exit_code));
  EXPECT_EQ(kExpectedStillRunningExitCode, exit_code);

  SignalChildren(kSignalFileCrash);
  exit_code = 42;
  base::TerminationStatus status =
      WaitForChildTermination(handle, &exit_code);
  EXPECT_EQ(base::TERMINATION_STATUS_PROCESS_CRASHED, status);

#if defined(OS_WIN)
  EXPECT_EQ(0xc0000005, exit_code);
#elif defined(OS_POSIX)
  int signaled = WIFSIGNALED(exit_code);
  EXPECT_NE(0, signaled);
  int signal = WTERMSIG(exit_code);
  EXPECT_EQ(SIGSEGV, signal);
#endif
  base::CloseProcessHandle(handle);

  // Reset signal handlers back to "normal".
  base::EnableInProcessStackDumping();
  remove(kSignalFileCrash);
}
#endif // !defined(OS_MACOSX)

MULTIPROCESS_TEST_MAIN(KilledChildProcess) {
  WaitToDie(kSignalFileKill);
#if defined(OS_WIN)
  // Kill ourselves.
  HANDLE handle = ::OpenProcess(PROCESS_ALL_ACCESS, 0, ::GetCurrentProcessId());
  ::TerminateProcess(handle, kExpectedKilledExitCode);
#elif defined(OS_POSIX)
  // Send a SIGKILL to this process, just like the OOM killer would.
  ::kill(getpid(), SIGKILL);
#endif
  return 1;
}

TEST_F(ProcessUtilTest, GetTerminationStatusKill) {
  remove(kSignalFileKill);
  base::ProcessHandle handle = this->SpawnChild("KilledChildProcess",
                                                false);
  ASSERT_NE(base::kNullProcessHandle, handle);

  int exit_code = 42;
  EXPECT_EQ(base::TERMINATION_STATUS_STILL_RUNNING,
            base::GetTerminationStatus(handle, &exit_code));
  EXPECT_EQ(kExpectedStillRunningExitCode, exit_code);

  SignalChildren(kSignalFileKill);
  exit_code = 42;
  base::TerminationStatus status =
      WaitForChildTermination(handle, &exit_code);
  EXPECT_EQ(base::TERMINATION_STATUS_PROCESS_WAS_KILLED, status);
#if defined(OS_WIN)
  EXPECT_EQ(kExpectedKilledExitCode, exit_code);
#elif defined(OS_POSIX)
  int signaled = WIFSIGNALED(exit_code);
  EXPECT_NE(0, signaled);
  int signal = WTERMSIG(exit_code);
  EXPECT_EQ(SIGKILL, signal);
#endif
  base::CloseProcessHandle(handle);
  remove(kSignalFileKill);
}

// Ensure that the priority of a process is restored correctly after
// backgrounding and restoring.
// Note: a platform may not be willing or able to lower the priority of
// a process. The calls to SetProcessBackground should be noops then.
TEST_F(ProcessUtilTest, SetProcessBackgrounded) {
  base::ProcessHandle handle = this->SpawnChild("SimpleChildProcess", false);
  base::Process process(handle);
  int old_priority = process.GetPriority();
  process.SetProcessBackgrounded(true);
  process.SetProcessBackgrounded(false);
  int new_priority = process.GetPriority();
  EXPECT_EQ(old_priority, new_priority);
}

// TODO(estade): if possible, port these 2 tests.
#if defined(OS_WIN)
TEST_F(ProcessUtilTest, EnableLFH) {
  ASSERT_TRUE(base::EnableLowFragmentationHeap());
  if (IsDebuggerPresent()) {
    // Under these conditions, LFH can't be enabled. There's no point to test
    // anything.
    const char* no_debug_env = getenv("_NO_DEBUG_HEAP");
    if (!no_debug_env || strcmp(no_debug_env, "1"))
      return;
  }
  HANDLE heaps[1024] = { 0 };
  unsigned number_heaps = GetProcessHeaps(1024, heaps);
  EXPECT_GT(number_heaps, 0u);
  for (unsigned i = 0; i < number_heaps; ++i) {
    ULONG flag = 0;
    SIZE_T length;
    ASSERT_NE(0, HeapQueryInformation(heaps[i],
                                      HeapCompatibilityInformation,
                                      &flag,
                                      sizeof(flag),
                                      &length));
    // If flag is 0, the heap is a standard heap that does not support
    // look-asides. If flag is 1, the heap supports look-asides. If flag is 2,
    // the heap is a low-fragmentation heap (LFH). Note that look-asides are not
    // supported on the LFH.

    // We don't have any documented way of querying the HEAP_NO_SERIALIZE flag.
    EXPECT_LE(flag, 2u);
    EXPECT_NE(flag, 1u);
  }
}

TEST_F(ProcessUtilTest, CalcFreeMemory) {
  scoped_ptr<base::ProcessMetrics> metrics(
      base::ProcessMetrics::CreateProcessMetrics(::GetCurrentProcess()));
  ASSERT_TRUE(NULL != metrics.get());

  // Typical values here is ~1900 for total and ~1000 for largest. Obviously
  // it depends in what other tests have done to this process.
  base::FreeMBytes free_mem1 = {0};
  EXPECT_TRUE(metrics->CalculateFreeMemory(&free_mem1));
  EXPECT_LT(10u, free_mem1.total);
  EXPECT_LT(10u, free_mem1.largest);
  EXPECT_GT(2048u, free_mem1.total);
  EXPECT_GT(2048u, free_mem1.largest);
  EXPECT_GE(free_mem1.total, free_mem1.largest);
  EXPECT_TRUE(NULL != free_mem1.largest_ptr);

  // Allocate 20M and check again. It should have gone down.
  const int kAllocMB = 20;
  scoped_array<char> alloc(new char[kAllocMB * 1024 * 1024]);
  size_t expected_total = free_mem1.total - kAllocMB;
  size_t expected_largest = free_mem1.largest;

  base::FreeMBytes free_mem2 = {0};
  EXPECT_TRUE(metrics->CalculateFreeMemory(&free_mem2));
  EXPECT_GE(free_mem2.total, free_mem2.largest);
  EXPECT_GE(expected_total, free_mem2.total);
  EXPECT_GE(expected_largest, free_mem2.largest);
  EXPECT_TRUE(NULL != free_mem2.largest_ptr);
}

TEST_F(ProcessUtilTest, GetAppOutput) {
  // Let's create a decently long message.
  std::string message;
  for (int i = 0; i < 1025; i++) {  // 1025 so it does not end on a kilo-byte
                                    // boundary.
    message += "Hello!";
  }

  FilePath python_runtime;
  ASSERT_TRUE(PathService::Get(base::DIR_SOURCE_ROOT, &python_runtime));
  python_runtime = python_runtime.Append(FILE_PATH_LITERAL("third_party"))
                                 .Append(FILE_PATH_LITERAL("python_26"))
                                 .Append(FILE_PATH_LITERAL("python.exe"));

  CommandLine cmd_line(python_runtime);
  cmd_line.AppendArg("-c");
  cmd_line.AppendArg("import sys; sys.stdout.write('" + message + "');");
  std::string output;
  ASSERT_TRUE(base::GetAppOutput(cmd_line, &output));
  EXPECT_EQ(message, output);

  // Let's make sure stderr is ignored.
  CommandLine other_cmd_line(python_runtime);
  other_cmd_line.AppendArg("-c");
  other_cmd_line.AppendArg("import sys; sys.stderr.write('Hello!');");
  output.clear();
  ASSERT_TRUE(base::GetAppOutput(other_cmd_line, &output));
  EXPECT_EQ("", output);
}

TEST_F(ProcessUtilTest, LaunchAsUser) {
  base::UserTokenHandle token;
  ASSERT_TRUE(OpenProcessToken(GetCurrentProcess(), TOKEN_ALL_ACCESS, &token));
  std::wstring cmdline =
      this->MakeCmdLine("SimpleChildProcess", false).command_line_string();
  EXPECT_TRUE(base::LaunchAppAsUser(token, cmdline, false, NULL));
}

#endif  // defined(OS_WIN)

#if defined(OS_POSIX)

namespace {

// Returns the maximum number of files that a process can have open.
// Returns 0 on error.
int GetMaxFilesOpenInProcess() {
  struct rlimit rlim;
  if (getrlimit(RLIMIT_NOFILE, &rlim) != 0) {
    return 0;
  }

  // rlim_t is a uint64 - clip to maxint. We do this since FD #s are ints
  // which are all 32 bits on the supported platforms.
  rlim_t max_int = static_cast<rlim_t>(std::numeric_limits<int32>::max());
  if (rlim.rlim_cur > max_int) {
    return max_int;
  }

  return rlim.rlim_cur;
}

const int kChildPipe = 20;  // FD # for write end of pipe in child process.

}  // namespace

MULTIPROCESS_TEST_MAIN(ProcessUtilsLeakFDChildProcess) {
  // This child process counts the number of open FDs, it then writes that
  // number out to a pipe connected to the parent.
  int num_open_files = 0;
  int write_pipe = kChildPipe;
  int max_files = GetMaxFilesOpenInProcess();
  for (int i = STDERR_FILENO + 1; i < max_files; i++) {
    if (i != kChildPipe) {
      int fd;
      if ((fd = HANDLE_EINTR(dup(i))) != -1) {
        close(fd);
        num_open_files += 1;
      }
    }
  }

  int written = HANDLE_EINTR(write(write_pipe, &num_open_files,
                                   sizeof(num_open_files)));
  DCHECK_EQ(static_cast<size_t>(written), sizeof(num_open_files));
  int ret = HANDLE_EINTR(close(write_pipe));
  DPCHECK(ret == 0);

  return 0;
}

int ProcessUtilTest::CountOpenFDsInChild() {
  int fds[2];
  if (pipe(fds) < 0)
    NOTREACHED();

  base::file_handle_mapping_vector fd_mapping_vec;
  fd_mapping_vec.push_back(std::pair<int, int>(fds[1], kChildPipe));
  base::ProcessHandle handle = this->SpawnChild(
      "ProcessUtilsLeakFDChildProcess", fd_mapping_vec, false);
  CHECK(handle);
  int ret = HANDLE_EINTR(close(fds[1]));
  DPCHECK(ret == 0);

  // Read number of open files in client process from pipe;
  int num_open_files = -1;
  ssize_t bytes_read =
      HANDLE_EINTR(read(fds[0], &num_open_files, sizeof(num_open_files)));
  CHECK_EQ(bytes_read, static_cast<ssize_t>(sizeof(num_open_files)));

  CHECK(base::WaitForSingleProcess(handle, 1000));
  base::CloseProcessHandle(handle);
  ret = HANDLE_EINTR(close(fds[0]));
  DPCHECK(ret == 0);

  return num_open_files;
}

TEST_F(ProcessUtilTest, FDRemapping) {
  int fds_before = CountOpenFDsInChild();

  // open some dummy fds to make sure they don't propagate over to the
  // child process.
  int dev_null = open("/dev/null", O_RDONLY);
  int sockets[2];
  socketpair(AF_UNIX, SOCK_STREAM, 0, sockets);

  int fds_after = CountOpenFDsInChild();

  ASSERT_EQ(fds_after, fds_before);

  int ret;
  ret = HANDLE_EINTR(close(sockets[0]));
  DPCHECK(ret == 0);
  ret = HANDLE_EINTR(close(sockets[1]));
  DPCHECK(ret == 0);
  ret = HANDLE_EINTR(close(dev_null));
  DPCHECK(ret == 0);
}

namespace {

std::string TestLaunchApp(const base::environment_vector& env_changes) {
  std::vector<std::string> args;
  base::file_handle_mapping_vector fds_to_remap;
  base::ProcessHandle handle;

  args.push_back("bash");
  args.push_back("-c");
  args.push_back("echo $BASE_TEST");

  int fds[2];
  PCHECK(pipe(fds) == 0);

  fds_to_remap.push_back(std::make_pair(fds[1], 1));
  EXPECT_TRUE(base::LaunchApp(args, env_changes, fds_to_remap,
                              true /* wait for exit */, &handle));
  PCHECK(HANDLE_EINTR(close(fds[1])) == 0);

  char buf[512];
  const ssize_t n = HANDLE_EINTR(read(fds[0], buf, sizeof(buf)));
  PCHECK(n > 0);

  PCHECK(HANDLE_EINTR(close(fds[0])) == 0);

  return std::string(buf, n);
}

const char kLargeString[] =
    "0123456789012345678901234567890123456789012345678901234567890123456789"
    "0123456789012345678901234567890123456789012345678901234567890123456789"
    "0123456789012345678901234567890123456789012345678901234567890123456789"
    "0123456789012345678901234567890123456789012345678901234567890123456789"
    "0123456789012345678901234567890123456789012345678901234567890123456789"
    "0123456789012345678901234567890123456789012345678901234567890123456789"
    "0123456789012345678901234567890123456789012345678901234567890123456789";

}  // namespace

TEST_F(ProcessUtilTest, LaunchApp) {
  base::environment_vector env_changes;

  env_changes.push_back(std::make_pair(std::string("BASE_TEST"),
                                       std::string("bar")));
  EXPECT_EQ("bar\n", TestLaunchApp(env_changes));
  env_changes.clear();

  EXPECT_EQ(0, setenv("BASE_TEST", "testing", 1 /* override */));
  EXPECT_EQ("testing\n", TestLaunchApp(env_changes));

  env_changes.push_back(std::make_pair(std::string("BASE_TEST"),
                                       std::string("")));
  EXPECT_EQ("\n", TestLaunchApp(env_changes));

  env_changes[0].second = "foo";
  EXPECT_EQ("foo\n", TestLaunchApp(env_changes));

  env_changes.clear();
  EXPECT_EQ(0, setenv("BASE_TEST", kLargeString, 1 /* override */));
  EXPECT_EQ(std::string(kLargeString) + "\n", TestLaunchApp(env_changes));

  env_changes.push_back(std::make_pair(std::string("BASE_TEST"),
                                       std::string("wibble")));
  EXPECT_EQ("wibble\n", TestLaunchApp(env_changes));
}

TEST_F(ProcessUtilTest, AlterEnvironment) {
  const char* const empty[] = { NULL };
  const char* const a2[] = { "A=2", NULL };
  base::environment_vector changes;
  char** e;

  e = base::AlterEnvironment(changes, empty);
  EXPECT_TRUE(e[0] == NULL);
  delete[] e;

  changes.push_back(std::make_pair(std::string("A"), std::string("1")));
  e = base::AlterEnvironment(changes, empty);
  EXPECT_EQ(std::string("A=1"), e[0]);
  EXPECT_TRUE(e[1] == NULL);
  delete[] e;

  changes.clear();
  changes.push_back(std::make_pair(std::string("A"), std::string("")));
  e = base::AlterEnvironment(changes, empty);
  EXPECT_TRUE(e[0] == NULL);
  delete[] e;

  changes.clear();
  e = base::AlterEnvironment(changes, a2);
  EXPECT_EQ(std::string("A=2"), e[0]);
  EXPECT_TRUE(e[1] == NULL);
  delete[] e;

  changes.clear();
  changes.push_back(std::make_pair(std::string("A"), std::string("1")));
  e = base::AlterEnvironment(changes, a2);
  EXPECT_EQ(std::string("A=1"), e[0]);
  EXPECT_TRUE(e[1] == NULL);
  delete[] e;

  changes.clear();
  changes.push_back(std::make_pair(std::string("A"), std::string("")));
  e = base::AlterEnvironment(changes, a2);
  EXPECT_TRUE(e[0] == NULL);
  delete[] e;
}

TEST_F(ProcessUtilTest, GetAppOutput) {
  std::string output;
  EXPECT_TRUE(base::GetAppOutput(CommandLine(FilePath("true")), &output));
  EXPECT_STREQ("", output.c_str());

  EXPECT_FALSE(base::GetAppOutput(CommandLine(FilePath("false")), &output));

  std::vector<std::string> argv;
  argv.push_back("/bin/echo");
  argv.push_back("-n");
  argv.push_back("foobar42");
  EXPECT_TRUE(base::GetAppOutput(CommandLine(argv), &output));
  EXPECT_STREQ("foobar42", output.c_str());
}

TEST_F(ProcessUtilTest, GetAppOutputRestricted) {
  // Unfortunately, since we can't rely on the path, we need to know where
  // everything is. So let's use /bin/sh, which is on every POSIX system, and
  // its built-ins.
  std::vector<std::string> argv;
  argv.push_back("/bin/sh");  // argv[0]
  argv.push_back("-c");       // argv[1]

  // On success, should set |output|. We use |/bin/sh -c 'exit 0'| instead of
  // |true| since the location of the latter may be |/bin| or |/usr/bin| (and we
  // need absolute paths).
  argv.push_back("exit 0");   // argv[2]; equivalent to "true"
  std::string output = "abc";
  EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 100));
  EXPECT_STREQ("", output.c_str());

  argv[2] = "exit 1";  // equivalent to "false"
  output = "before";
  EXPECT_FALSE(base::GetAppOutputRestricted(CommandLine(argv),
                                            &output, 100));
  EXPECT_STREQ("", output.c_str());

  // Amount of output exactly equal to space allowed.
  argv[2] = "echo 123456789";  // (the sh built-in doesn't take "-n")
  output.clear();
  EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 10));
  EXPECT_STREQ("123456789\n", output.c_str());

  // Amount of output greater than space allowed.
  output.clear();
  EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 5));
  EXPECT_STREQ("12345", output.c_str());

  // Amount of output less than space allowed.
  output.clear();
  EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 15));
  EXPECT_STREQ("123456789\n", output.c_str());

  // Zero space allowed.
  output = "abc";
  EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 0));
  EXPECT_STREQ("", output.c_str());
}

TEST_F(ProcessUtilTest, GetAppOutputRestrictedNoZombies) {
  std::vector<std::string> argv;
  argv.push_back("/bin/sh");  // argv[0]
  argv.push_back("-c");       // argv[1]
  argv.push_back("echo 123456789012345678901234567890");  // argv[2]

  // Run |GetAppOutputRestricted()| 300 (> default per-user processes on Mac OS
  // 10.5) times with an output buffer big enough to capture all output.
  for (int i = 0; i < 300; i++) {
    std::string output;
    EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 100));
    EXPECT_STREQ("123456789012345678901234567890\n", output.c_str());
  }

  // Ditto, but with an output buffer too small to capture all output.
  for (int i = 0; i < 300; i++) {
    std::string output;
    EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 10));
    EXPECT_STREQ("1234567890", output.c_str());
  }
}

#if defined(OS_LINUX)
TEST_F(ProcessUtilTest, GetParentProcessId) {
  base::ProcessId ppid = base::GetParentProcessId(base::GetCurrentProcId());
  EXPECT_EQ(ppid, getppid());
}

TEST_F(ProcessUtilTest, ParseProcStatCPU) {
  // /proc/self/stat for a process running "top".
  const char kTopStat[] = "960 (top) S 16230 960 16230 34818 960 "
      "4202496 471 0 0 0 "
      "12 16 0 0 "  // <- These are the goods.
      "20 0 1 0 121946157 15077376 314 18446744073709551615 4194304 "
      "4246868 140733983044336 18446744073709551615 140244213071219 "
      "0 0 0 138047495 0 0 0 17 1 0 0 0 0 0";
  EXPECT_EQ(12 + 16, base::ParseProcStatCPU(kTopStat));

  // cat /proc/self/stat on a random other machine I have.
  const char kSelfStat[] = "5364 (cat) R 5354 5364 5354 34819 5364 "
      "0 142 0 0 0 "
      "0 0 0 0 "  // <- No CPU, apparently.
      "16 0 1 0 1676099790 2957312 114 4294967295 134512640 134528148 "
      "3221224832 3221224344 3086339742 0 0 0 0 0 0 0 17 0 0 0";

  EXPECT_EQ(0, base::ParseProcStatCPU(kSelfStat));
}
#endif

#endif  // defined(OS_POSIX)

// TODO(vandebo) make this work on Windows too.
#if !defined(OS_WIN)

#if defined(USE_TCMALLOC)
extern "C" {
int tc_set_new_mode(int mode);
}
#endif  // defined(USE_TCMALLOC)

class OutOfMemoryDeathTest : public testing::Test {
 public:
  OutOfMemoryDeathTest()
      : value_(NULL),
        // Make test size as large as possible minus a few pages so
        // that alignment or other rounding doesn't make it wrap.
        test_size_(std::numeric_limits<std::size_t>::max() - 12 * 1024),
        signed_test_size_(std::numeric_limits<ssize_t>::max()) {
  }

  virtual void SetUp() {
#if defined(USE_TCMALLOC)
    tc_set_new_mode(1);
  }

  virtual void TearDown() {
    tc_set_new_mode(0);
#endif  // defined(USE_TCMALLOC)
  }

  void SetUpInDeathAssert() {
    // Must call EnableTerminationOnOutOfMemory() because that is called from
    // chrome's main function and therefore hasn't been called yet.
    // Since this call may result in another thread being created and death
    // tests shouldn't be started in a multithread environment, this call
    // should be done inside of the ASSERT_DEATH.
    base::EnableTerminationOnOutOfMemory();
  }

  void* value_;
  size_t test_size_;
  ssize_t signed_test_size_;
};

TEST_F(OutOfMemoryDeathTest, New) {
  ASSERT_DEATH({
      SetUpInDeathAssert();
      value_ = operator new(test_size_);
    }, "");
}

TEST_F(OutOfMemoryDeathTest, NewArray) {
  ASSERT_DEATH({
      SetUpInDeathAssert();
      value_ = new char[test_size_];
    }, "");
}

TEST_F(OutOfMemoryDeathTest, Malloc) {
  ASSERT_DEATH({
      SetUpInDeathAssert();
      value_ = malloc(test_size_);
    }, "");
}

TEST_F(OutOfMemoryDeathTest, Realloc) {
  ASSERT_DEATH({
      SetUpInDeathAssert();
      value_ = realloc(NULL, test_size_);
    }, "");
}

TEST_F(OutOfMemoryDeathTest, Calloc) {
  ASSERT_DEATH({
      SetUpInDeathAssert();
      value_ = calloc(1024, test_size_ / 1024L);
    }, "");
}

TEST_F(OutOfMemoryDeathTest, Valloc) {
  ASSERT_DEATH({
      SetUpInDeathAssert();
      value_ = valloc(test_size_);
    }, "");
}

#if defined(OS_LINUX)
TEST_F(OutOfMemoryDeathTest, Pvalloc) {
  ASSERT_DEATH({
      SetUpInDeathAssert();
      value_ = pvalloc(test_size_);
    }, "");
}

TEST_F(OutOfMemoryDeathTest, Memalign) {
  ASSERT_DEATH({
      SetUpInDeathAssert();
      value_ = memalign(4, test_size_);
    }, "");
}

TEST_F(OutOfMemoryDeathTest, ViaSharedLibraries) {
  // g_try_malloc is documented to return NULL on failure. (g_malloc is the
  // 'safe' default that crashes if allocation fails). However, since we have
  // hopefully overridden malloc, even g_try_malloc should fail. This tests
  // that the run-time symbol resolution is overriding malloc for shared
  // libraries as well as for our code.
  ASSERT_DEATH({
      SetUpInDeathAssert();
      value_ = g_try_malloc(test_size_);
    }, "");
}
#endif  // OS_LINUX

#if defined(OS_POSIX)
TEST_F(OutOfMemoryDeathTest, Posix_memalign) {
  typedef int (*memalign_t)(void **, size_t, size_t);
#if defined(OS_MACOSX)
  // posix_memalign only exists on >= 10.6. Use dlsym to grab it at runtime
  // because it may not be present in the SDK used for compilation.
  memalign_t memalign =
      reinterpret_cast<memalign_t>(dlsym(RTLD_DEFAULT, "posix_memalign"));
#else
  memalign_t memalign = posix_memalign;
#endif  // OS_*
  if (memalign) {
    // Grab the return value of posix_memalign to silence a compiler warning
    // about unused return values. We don't actually care about the return
    // value, since we're asserting death.
    ASSERT_DEATH({
        SetUpInDeathAssert();
        EXPECT_EQ(ENOMEM, memalign(&value_, 8, test_size_));
      }, "");
  }
}
#endif  // OS_POSIX

#if defined(OS_MACOSX)

// Purgeable zone tests (if it exists)

TEST_F(OutOfMemoryDeathTest, MallocPurgeable) {
  malloc_zone_t* zone = base::GetPurgeableZone();
  if (zone)
    ASSERT_DEATH({
        SetUpInDeathAssert();
        value_ = malloc_zone_malloc(zone, test_size_);
      }, "");
}

TEST_F(OutOfMemoryDeathTest, ReallocPurgeable) {
  malloc_zone_t* zone = base::GetPurgeableZone();
  if (zone)
    ASSERT_DEATH({
        SetUpInDeathAssert();
        value_ = malloc_zone_realloc(zone, NULL, test_size_);
      }, "");
}

TEST_F(OutOfMemoryDeathTest, CallocPurgeable) {
  malloc_zone_t* zone = base::GetPurgeableZone();
  if (zone)
    ASSERT_DEATH({
        SetUpInDeathAssert();
        value_ = malloc_zone_calloc(zone, 1024, test_size_ / 1024L);
      }, "");
}

TEST_F(OutOfMemoryDeathTest, VallocPurgeable) {
  malloc_zone_t* zone = base::GetPurgeableZone();
  if (zone)
    ASSERT_DEATH({
        SetUpInDeathAssert();
        value_ = malloc_zone_valloc(zone, test_size_);
      }, "");
}

TEST_F(OutOfMemoryDeathTest, PosixMemalignPurgeable) {
  malloc_zone_t* zone = base::GetPurgeableZone();

  typedef void* (*zone_memalign_t)(malloc_zone_t*, size_t, size_t);
  // malloc_zone_memalign only exists on >= 10.6. Use dlsym to grab it at
  // runtime because it may not be present in the SDK used for compilation.
  zone_memalign_t zone_memalign =
      reinterpret_cast<zone_memalign_t>(
        dlsym(RTLD_DEFAULT, "malloc_zone_memalign"));

  if (zone && zone_memalign) {
    ASSERT_DEATH({
        SetUpInDeathAssert();
        value_ = zone_memalign(zone, 8, test_size_);
      }, "");
  }
}

// Since these allocation functions take a signed size, it's possible that
// calling them just once won't be enough to exhaust memory. In the 32-bit
// environment, it's likely that these allocation attempts will fail because
// not enough contiguous address space is availble. In the 64-bit environment,
// it's likely that they'll fail because they would require a preposterous
// amount of (virtual) memory.

TEST_F(OutOfMemoryDeathTest, CFAllocatorSystemDefault) {
  ASSERT_DEATH({
      SetUpInDeathAssert();
      while ((value_ =
              base::AllocateViaCFAllocatorSystemDefault(signed_test_size_))) {}
    }, "");
}

TEST_F(OutOfMemoryDeathTest, CFAllocatorMalloc) {
  ASSERT_DEATH({
      SetUpInDeathAssert();
      while ((value_ =
              base::AllocateViaCFAllocatorMalloc(signed_test_size_))) {}
    }, "");
}

TEST_F(OutOfMemoryDeathTest, CFAllocatorMallocZone) {
  ASSERT_DEATH({
      SetUpInDeathAssert();
      while ((value_ =
              base::AllocateViaCFAllocatorMallocZone(signed_test_size_))) {}
    }, "");
}

#if !defined(ARCH_CPU_64_BITS)

// See process_util_unittest_mac.mm for an explanation of why this test isn't
// run in the 64-bit environment.

TEST_F(OutOfMemoryDeathTest, PsychoticallyBigObjCObject) {
  ASSERT_DEATH({
      SetUpInDeathAssert();
      while ((value_ = base::AllocatePsychoticallyBigObjCObject())) {}
    }, "");
}

#endif  // !ARCH_CPU_64_BITS
#endif  // OS_MACOSX

#endif  // !defined(OS_WIN)